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Chapter 1

Introduction

In this submission to the NIST Lightweight Cryptography Standardization Process, we present a new
Authenticated Encryption with Associated Data (AEAD) scheme Lilliput-AE based on the tweakable
block cipher Lilliput-TBC which is itself based on the classical block cipher Lilliput presented in [6]
with a modified tweakey schedule.

We define two particular authenticated encryption modes: Lilliput-I and Lilliput-II based re-
spectively on the two modes ΘCB3 [38] and SCT-2 used in Deoxys [33] for both. The ΘCB3 mode is a
nonce-respecting mode whereas SCT-2 is a nonce-misuse resistant mode.

From those two authenticated encryption modes Lilliput-I and Lilliput-II, we derive several sets
of parameters that conform with the NIST Submission Requirements and Evaluation Criteria for the
Lightweight Cryptography Standardization Process. Our primary member is Lilliput-II-128.

As shown in the next chapters, Lilliput-AE is an authenticated encryption scheme that provides full
128-bit, 192-bit or 256-bit security level. It performs well in software and also in hardware. Moreover,
the underlying block cipher Lilliput has been extensively studied by the cryptographic community
[53, 40, 51] and no weakness has been exhibited for the full version of Lilliput.

We are convinced that extending Lilliput, a well-studied lightweight block cipher, to an 8-bit ori-
ented version and combining it with a mode with good performances and with reinforced security, is
a good answer regarding both efficiency and security to the expectations of the NIST standardization
process.

Main Features of Lilliput-AE. From our point of view, Lilliput-AE brings many advantages:

• It is based on building schemes (authenticated encryption modes, encryption process) that have
been significantly studied by the cryptographic community. Moreover, the security of these blocks
has been strengthened by modifiying some parameters (e.g., more secure S-box and tweakey sched-
ule).

• Its primary member is a nonce-misuse resistant mode, which allows an easier management of
cryptographic components deployed on the field.

• Its software implementations on 8-bit (e.g., Atmel AVR ATmega128 microcontrollers) and 16-bit
(e.g., Texas Instruments MSP430F1611 microcontrollers) platforms are very competitive. In terms
of execution time (which relates to power consumption), and for 128-bit keys, Lilliput-AE is
comparable to lightweight winners of the CAESAR competition [16], ACORN and Ascon, on
8-bit platforms, and is significantly faster on 16-bit platforms.

• Its hardware implementations on FPGA platforms (e.g., Xilinx Spartan-6) are more compact than
ACORN and Ascon. Moreover, straightforward ASIC implementations of Lilliput-AE lead to at
most around 5000 Gate Equivalents (GEs) for its maximum parameter sizes. Serial implementations
will decrease this figure down to 4000 GEs or 3000 GEs depending on the parameter sizes, which
is equivalent to serial implementations of plain AES without authentication mode.
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• Some degrees of freedom are given to the implementers of Lilliput-AE: for some operations (e.g.,
in the tweakey schedule), they can trade code size for RAM usage and execution time. Some
operations can also be tabulated to accelerate their computation.

• The design facilitates side-channel protection: in particular, the S-box of Lilliput-AE has been
chosen to optimize its cost in threshold implementations.

• A first fault injection analysis of Lilliput-AE shows that faulting 7 rounds or more from the
end of the algorithm requires injecting too many faults (say millions) to be practical. A cautious
recommendation is then to protect the last 7 rounds of Lilliput-AE against fault injection,
which leads to a 22% execution time overhead if a straightforward duplication countermeasure is
implemented.

Organization of the submission. In Chapter 2, we provide the complete specifications of our sub-
mission Lilliput-AE including the two considered modes of authenticated encryption with associated
data Lilliput-I and Lilliput-II (Section 2.2) and the tweakable block cipher Lilliput-TBC with its
particular tweakey schedule (Section 2.3).

In Chapter 3, we detail our design choices: first for the modes (Section 3.1) and second for the
tweakable block cipher (Section 3.2). We also perform an extensive security analysis of these two parts
in Section 3.3 and in Section 3.4.

In Chapter 4, we give the implementation results we obtain for both software platforms and hardware
platforms.
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Chapter 2

Specifications

This chapter presents the full specifications of our submission to the NIST Lightweight Cryptography
Standardization Process. More precisely, we present our new Authenticated Encryption with Associated
Data (AEAD) scheme Lilliput-AE.

After introducing notations and the sets of parameters, we introduce in Section 2.2 the two particular
authenticated encryption modes: Lilliput-I based on the nonce-respecting mode ΘCB3 and Lilliput-
II based on the nonce-misuse resistant mode SCT-2.

Then, in Section 2.3, we introduce our tweakable block cipher Lilliput-TBC used in both Lilliput-I
and Lilliput-II.

Notations. Let us introduce the following notations: K will represent the key of length k bits, P the
plaintext of length n bits, T the tweak of length t bits and we denote by EK(T, P ) the ciphering process
using the tweakable block cipher ETK .

The concatenation operation at binary level is represented by || and pad10∗ is the function that
applies the 10∗ padding on n bits, i.e. pad10∗(X) = X||1||0n−|X|−1 when |X| < n. For an empty string
ε, the 10∗ padding will not add any bit: pad10∗(ε) = ε. The truncation of the word X to the first i bits
is given by dXei, and the truncation to the last i bits by bXci. To emphasize a string X is of length n,
we may write it X(n). We denote by � i and � i respectively the right and left shifts of i bits, and by
≫ i and ≪ i the right and left rotations of i bits.

We will also denote by S�i and S�i the binary matrices of size 8× 8 corresponding to a right shift
by i bits positions or a left shift by i bits positions respectively. More precisely, and for example,

S�1 =



0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


and S�1 =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


The encryption part E takes as input a variable-length plaintext M (with m = |M | bits), a variable-

length associated data A (with a = |A| bits), a fixed-length public nonce N and a k-bit key K (we
deliberately used the same letter K to represent the key in the authenticated encryption scheme and
the one in the tweakable block cipher, since they always refer to the same object). It outputs an m-bit
ciphertext C and a τ -bit tag, denoted tag (with τ ∈ [0, · · · , n]) i.e. (C, tag) = EK(N,A,M).

The verification/decryption part D takes as input a variable-length ciphertext C (with m = |C|),
a τ -bit tag, denoted tag (with τ ∈ [0, · · · , n]), a variable-length associated data A (with a = |A|), a
fixed-length public nonce N and a k-bit key K. It outputs either an error string ⊥ to signify that the
verification has failed, or an m-bit string M = DK(N,A,C, tag) when the tag is valid.

The maximum message length (in n-bit blocks) is denoted maxl and the maximum number of mes-
sages that can be handled with the same key is denoted maxm (the same limitation applies to the
associated data material).
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2.1 Recommended Parameters
We derive our scheme Lilliput-AE into two authenticated encryption modes: Lilliput-I and Lilliput-
II. Lilliput-I is a nonce-respecting mode corresponding with ΘCB3 and Lilliput-II is a nonce-misuse
resistant mode corresponding with SCT-2.

The recommended parameter sets for all variants of these modes is given in table 2.1. These param-
eters have been chosen according to the internal tweakable block cipher Lilliput-TBC.

Name k t n |N | τ
Lilliput-I-128 128 192 128 120 128
Lilliput-I-192 192 192 128 120 128
Lilliput-I-256 256 192 128 120 128

Lilliput-II-128 128 128 128 120 128
Lilliput-II-192 192 128 128 120 128
Lilliput-II-256 256 128 128 120 128

Table 2.1: Recommended parameter sets for Lilliput-AE. Our primary member Lilliput-II-128 is in
bold notation.

For both variants, maxm = 2|N | = 2120 bits. However, maxl is dependent on the tweak input and
thus differs from one variant to the other:

• in the encryption part of Lilliput-I, the tweak is a concatenation of a 4-bit prefix, the nonce N
and the index of the message block, thus maxl = 2t−4−|N | blocks.

• in the encryption part of Lilliput-II, the tweak is a concatenation of a 4-bit prefix and the index
of the message block, thus maxl = 2t−4 blocks.

As a result, the maximum message length in bytes is 272 bytes for Lilliput-I and 2128 bytes for Lilliput-
II.

2.2 The Authenticated Encryption Lilliput-AE

In this section, we describe the authenticated encryption modes that are used in our proposal Lilliput-
AE. These mode variants are similar to the two modes described in Deoxys [33]:

• Lilliput-I (Section 2.2.1): in this nonce-respecting variant, the same nonce N is expected to
never be used twice with the same key for encryption. EI denotes the encryption part and DI the
verification/decryption part.

• Lilliput-II (Section 2.2.2): in this variant, a nonce N may be reused with the same key for
encryption. EII denotes the encryption part and DII the verification/decryption part.

As stated previously, 4-bit prefixes are used for the tweak input to separate the various types of
encryption/authentication blocks, akin to what has been done in Deoxys [33].

2.2.1 Nonce-Respecting Mode: ΘCB3
This scheme follows the ΘCB3 framework [38] and therefore directly benefits from this framework’s
proof of security regarding authentication and privacy. In this mode, the tweak length is 192 bits. The
encryption algorithm EI is given in Algorithm 1 while the verification/decryption algorithm DI is given
in Algorithm 2.

If the length of the associated data is not a multiple of the block size, the final block is padded with
the 10∗ padding, as depicted in Figure 2.1. The same applies for the message and the ciphertext as
shown in Figures 2.2 and 2.3.
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Figure 2.2: Message processing for the nonce-respecting mode.
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Figure 2.3: Ciphertext processing for the nonce-respecting mode.
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Algorithm 1: The encryption algorithm EIK(N,A,M).
In the tweak inputs, the value N is encoded on 120 bits, the integer values j and l are encoded
on 68 bits, while the integer values i and la are encoded on 188 bits.
1 /* Associated data */
2 A0|| · · · ||Ala−1||A∗ ← A where each |Ai| = n and |A∗| < n
3 Auth ← 0(n)

4 for i = 0 to la − 1 do
5 Auth ← Auth ⊕EK(0010||i, Ai)
6 end
7 if A∗ 6= ε then
8 Auth ← Auth ⊕EK(0110||la, pad10∗(A∗))
9 end

10

11 /* Message */
12 M0|| · · · ||Ml−1||M∗ ←M where each |Mj | = n and |M∗| < n
13 Checksum ← 0(n)

14 for j = 0 to l − 1 do
15 Checksum ← Checksum ⊕Mj

16 Cj ← EK(0000||N ||j,Mj)

17 end
18 if M∗ = ε then
19 Final ← EK(0001||N ||l, Checksum)
20 C∗ ← ε

21 else
22 Checksum ← Checksum ⊕pad10∗(M∗)
23 Pad ← EK(0100||N ||l, 0(n))
24 C∗ ←M∗ ⊕ dPade|M∗|
25 Final ← EK(0101||N ||l + 1, Checksum)
26 end
27

28 /* Tag generation */
29 tag ← Final ⊕ Auth
30 return (C0|| · · · ||Cl−1||C∗, tag)
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Algorithm 2: The verification/decryption algorithm DI
K(N,A,C, tag).

In the tweak inputs, the value N is encoded on 120 bits, the integer values j and l are encoded
on 68 bits, while the integer values i and la are encoded on 188 bits.
1 /* Associated data */
2 A0|| · · · ||Ala−1||A∗ ← A where each |Ai| = n and |A∗| < n
3 Auth ← 0(n)

4 for i = 0 to la − 1 do
5 Auth ← Auth ⊕EK(0010||i, Ai)
6 end
7 if A∗ 6= ε then
8 Auth ← Auth ⊕EK(0110||la, pad10∗(A∗))
9 end

10

11 /* Ciphertext */
12 C0|| · · · ||Cl−1||C∗ ← C where each |Cj | = n and |C∗| < n
13 Checksum ← 0(n)

14 for j = 0 to l − 1 do
15 Mj ← DK(0000||N ||j, Cj)
16 Checksum ← Checksum ⊕Mj

17 end
18 if C∗ = ε then
19 Final ← EK(0001||N ||l, Checksum)
20 M∗ ← ε

21 else
22 Pad ← EK(0100||N ||l, 0(n))
23 M∗ ← C∗ ⊕ dPade|C∗|
24 Checksum ← Checksum ⊕pad10∗(M∗)
25 Final ← EK(0101||N ||l + 1, Checksum)
26 end
27

28 /* Tag generation */
29 tag′ ← Final ⊕ Auth
30 if tag′ = tag then
31 return (M0|| · · · ||Ml−1||M∗)
32 else
33 return ⊥
34 end
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2.2.2 Nonce-Misuse Resistant Mode
This scheme is the variant of SCT introduced in Deoxys [33]: SCT-2. In this mode, the tweak length is
128 bits while the size of the nonce N remains unchanged and is 120 bits. The encryption algorithm EII
is given in Algorithm 3 while the verification/decryption algorithm DII is given in Algorithm 4.

The associated data is processed as in the previous variant, as depicted in Figure 2.4. The processing
of the message is shown in Figures 2.5 and 2.6 and decryption is shown in Figure 2.7.
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Figure 2.4: Handling of the associated data in the nonce-misuse resistant mode.
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Figure 2.5: Message processing in the authentication part of the nonce-misuse resistant mode.
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Figure 2.6: Message processing in the encryption part of the nonce-misuse resistant mode.
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Figure 2.7: Ciphertext processing in the decryption part of the nonce-misuse resistant mode.
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Algorithm 3: The encryption algorithm EIIK (N,A,M).
In the tweak inputs, the integer values i, j, l and la are encoded on 124 bits. Moreover, tag⊕ j
values are encoded on 127 bits (the most significant bit is truncated since |tag| = τ).
1 /* Associated data */
2 A0|| · · · ||Ala−1||A∗ ← A where each |Ai| = n and |A∗| < n
3 Auth ← 0(n)

4 for i = 0 to la − 1 do
5 Auth ← Auth ⊕EK(0010||i, Ai)
6 end
7 if A∗ 6= ε then
8 Auth ← Auth ⊕EK(0110||la, pad10∗(A∗))
9 end

10

11 /* Message authentication and tag generation */
12 M0|| · · · ||Ml−1||M∗ ←M where each |Mj | = n and |M∗| < n
13 tag ← Auth
14 for j = 0 to l − 1 do
15 tag← tag⊕ EK(0000||j,Mj)
16 end
17 if M∗ 6= ε then
18 tag ← tag⊕ EK(0100||l, pad10∗(M∗))
19 end
20 tag← EK(0001||04||N, tag)
21

22 /* Message encryption */
23 for j = 0 to l − 1 do
24 Cj ←Mj ⊕ EK(1||tag⊕ j, 08||N)
25 end
26 if M∗ 6= ε then
27 C∗ ←M∗ ⊕ dEK(1||tag⊕ l, 08||N)e|M∗|
28 else
29 C∗ ← ε
30 end
31

32 return (C0|| · · · ||Cl−1||C∗, tag)

11



Algorithm 4: The verification/decryption algorithm DII
K (N,A,C, tag).

In the tweak inputs, the integer values i, j, l and la are encoded on 124 bits. Moreover, tag⊕ j
values are encoded on 127 bits (the most significant bit is truncated since |tag| = τ).
1 /* Message decryption */
2 C0|| · · · ||Cl−1||C∗ ← C where each |Cj | = n and |C∗| < n
3 for j = 0 to l − 1 do
4 Mj ← Cj ⊕ EK(1||tag⊕ j, 08||N)
5 end
6 if C∗ 6= ε then
7 M∗ ← C∗ ⊕ dEK(1||tag⊕ l, 08||N)e|C∗|
8 else
9 M∗ ← ε

10 end
11

12 /* Associated data */
13 A0|| · · · ||Ala−1||A∗ ← A where each |Ai| = n and |A∗| < n
14 Auth ← 0(n)

15 for i = 0 to la − 1 do
16 Auth ← Auth ⊕EK(0010||i, Ai)
17 end
18 if A∗ 6= ε then
19 Auth ← Auth ⊕EK(0110||la, pad10∗(A∗))
20 end
21

22 /* Message authentication and tag generation */
23 M0|| · · · ||Ml−1||M∗ ←M where each |Mj | = n and |M∗| < n
24 tag′ ← Auth
25 for j = 0 to l − 1 do
26 tag′ ← tag′ ⊕ EK(0000||j,Mj)
27 end
28 if M∗ 6= ε then
29 tag′ ← tag′ ⊕ EK(0100||l, pad10∗(M∗))
30 end
31 tag′ ← EK(0001||04||N, tag′)
32

33 /* Tag verification */
34 if tag′ = tag then
35 return (M0|| · · · ||Ml−1||M∗)
36 else
37 return ⊥
38 end

12



2.3 The Tweakable Block Cipher Lilliput-TBC

In this section we present our dedicated lightweight Tweakable Block Cipher Lilliput-TBC that is
based on the EGFN [8] described in Fig. 2.8.

Lilliput-TBC is composed of 6 variants depending on the key lengths (possible key lengths are
equal to 128, 192 and 256 bits) and on the tweak lengths (possible tweak lengths are equal to 128 or 192
bits). The different parameters for those variants are specified in Table 2.2. Lilliput-TBC-I for the
three possible key lengths and a tweak length equal to 192 bits will be used in the mode Lilliput-I and
Lilliput-TBC-II for the three possible key lengths and a tweak length equal to 128 bits will be used
in the mode Lilliput-II.

Name k t Nb of rounds r
Lilliput-TBC-I-128 128 192 32
Lilliput-TBC-I-192 192 192 36
Lilliput-TBC-I-256 256 192 42
Lilliput-TBC-II-128 128 128 32
Lilliput-TBC-II-192 192 128 36
Lilliput-TBC-II-256 256 128 42

Table 2.2: Recommended parameter sets for Lilliput-TBC.

2.3.1 Encryption Process
Lilliput-TBC is a 128-bit tweakable block cipher with key sizes of 128, 192 or 256 bits and tweak sizes of
128 or 192 bits. The whole encryption process is depicted in Fig. 2.9. As previously explained, Lilliput-
TBC uses an Extended Generalized Feistel Network (EGFN) with a 128-bit state and a round function
acting at byte level. The state X is seen as 16 bytes, denoted X15, · · · , X0. In its 128-bit key version,
the cipher is composed of r = 32 rounds, i.e. 32 repetitions of a single EGFN called OneRoundEGFN,
depicted in Fig. 2.8. Each Fj for j from 0 to 7 is defined as Fj = S(Xj ⊕ RTKi

j) where S is an S-box
that acts at byte level and RTKi

j is the byte of position j of the 64-bit subtweakey RTKi of round i.
The 32 64-bit subtweakeys RTKi are generated from the master key and the tweak using the tweakey
schedule.

In more details, the round function denoted OneRoundEGFN in Fig. 2.9 is composed of a layer of
non linear components called NonLinearLayer for confusion; a new layer called LinearLayer in [8]
that represent a linear layer made of linear components applied in a Feistel way; and a block-wise
permutation called PermutationLayer for diffusion. All three layers act at byte level on the EGFN state
X and together constitute one iteration of the EGFN, as shown in Fig. 2.8.

Note that with this new layer LinearLayer, it is possible to shuffle blocks better than what was
possible using the block-wise permutation only of a classical Feistel scheme, while preserving the self-
invertibility of the scheme.

Note that the last round skips the PermutationLayer for involution reasons.
For the 192-bit and 256-bit key versions, the number of rounds r is 36 and 42 respectively.

Overview of the EGFN round function

The particular EGFN we use in Lilliput-TBC with k = 16 blocks is depicted in Fig. 2.8.
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NonLinearLayer

LinearLayer

PermutationLayer

X0X1X2X3X4X5X6X7X8X9X10X11X12X13X14X15

π = (0, 13, 6, 12, 2, 14)(1, 9, 5, 11)(3, 8, 4, 10)(7, 15)

F7

F6

F5

F4

F3

F2

F1

F0

Figure 2.8: The EGFN used in Lilliput-TBC that reaches full diffusion in d = 4 rounds. The permu-
tation π is given as a product of cycles and can also be found in Table 2.3.

In more details, OneRoundEGFN is composed of:

• NonLinearLayer: It is the non-linear part of the EGFN and is made of 8 parallel updates of the
EGFN state. Each Fj for j from 0 to 7 is defined as Fj = S(Xj ⊕RTKi

j) where S is an S-box that
acts at byte level given in Table 2.4 and RTKi

j is the byte of position j of the 64-bit subtweakey
RTKi of round i.

• LinearLayer: It aims at providing quick diffusion between bytes and consists in xoring some bytes
to some other bytes. More precisely, as depicted in Fig 2.8, blocks X1 to X6 are xored to block
X15, and block X7 is xored to blocks X9 to X15.

• PermutationLayer: It consists in applying the permutation π given in Table 2.3 to the bytes.

The permutation π used in PermutationLayer

The permutation π is given in Table 2.3. It has been chosen to maximize the number of active S-boxes
on 18, 19 and 20 rounds as it will be shown in Section 3.4. For each round i ∈ {0, · · · , r − 1}, let us
denote Y i the output at round i after the transformations NonLinearLayer and LinearLayer with Y i =
(Y i15, · · · , Y i0 ) its byte representation, i.e. Y i = (Y i15, · · · , Y i0 ) = LinearLayer(NonLinearLayer(Xi)).
Then, the PermutationLayer is applied on Y i in the following way:

∀i ∈ {1, · · · , r − 2},∀j{0, · · · , 15} ∈ Xi
π(j) = Y i−1

j .

Table 2.3: Block permutation π used in encryption mode and its inverse π−1 used in decryption mode.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(i) 13 9 14 8 10 11 12 15 4 5 3 1 2 6 0 7
π−1(i) 14 11 12 10 8 9 13 15 3 1 4 5 6 0 2 7
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The S-box S used in NonLinearLayer

The S-box S used in NonLinearLayer is the 8-bit S-box given in Table 2.4. The properties of this S-box
will be described in Section 3.2.3 of the Chapter 3.

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00 20 00 B2 85 3B 35 A6 A4 30 E4 6A 2C FF 59 E2 0E
10 F8 1E 7A 80 15 BD 3E B1 E8 F3 A2 C2 DA 51 2A 10
20 21 01 23 78 5C 24 27 B5 37 C7 2B 1F AE 0A 77 5F
30 6F 09 9D 81 04 5A 29 DC 39 9C 05 57 97 74 79 17
40 44 C6 E6 E9 DD 41 F2 8A 54 CA 6E 4A E1 AD B6 88
50 1C 98 7E CE 63 49 3A 5D 0C EF F6 34 56 25 2E D6
60 67 75 55 76 B8 D2 61 D9 71 8B CD 0B 72 6C 31 4B
70 69 FD 7B 6D 60 3C 2F 62 3F 22 73 13 C9 82 7F 53
80 32 12 A0 7C 02 87 84 86 93 4E 68 46 8D C3 DB EC
90 9B B7 89 92 A7 BE 3D D8 EA 50 91 F1 33 38 E0 A9
A0 A3 83 A1 1B CF 06 95 07 9E ED B9 F5 4C C0 F4 2D
B0 16 FA B4 03 26 B3 90 4F AB 65 FC FE 14 F7 E3 94
C0 EE AC 8C 1A DE CB 28 40 7D C8 C4 48 6B DF A5 52
D0 E5 FB D7 64 F9 F0 D3 5E 66 96 8F 1D 45 36 CC C5
E0 4D 9F BF 0F D1 08 EB 43 42 19 E7 99 A8 8E 58 C1
F0 9A D4 18 47 AA AF BC 5B D5 11 D0 B0 70 BB 0D BA

Table 2.4: The S-box in hexadecimal notation. The column indicates the least significant nibble and the
row indicates the most significant nibble of the S-box input.

Overall encryption process

Fig. 2.9 gives an overview of the complete encryption process of Lilliput-TBC for all its variants.

OneRoundEGFN

OneRoundEGFN

OneRoundEGFN

P

/128

/128

C

RTK0/
64

RTK1

RTKr−1

...

NonLinearLayer

LinearLayer

PermutationLayer

NonLinearLayer

LinearLayer

Figure 2.9: Lilliput-TBC Encryption process.

2.3.2 Decryption Process
As Lilliput-TBC is a Feistel network, decryption is quite analogous to encryption but uses the inverse
block permutation π−1 given in Table 2.3 and the subkeys in the reverse order. Note that the tweakey
process could be inverted at low cost.
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2.3.3 Tweakey Schedule
An adapted version of the TWEAKEY framework [32] was used as a building block for the scheduling
of the key and the tweak. More specifically, we used a variant of the STK construction, where the key
and the tweak inputs are handled almost the same way. The proposed version is depicted in Fig. 2.10.

α0

α1

...

αp−1

TK0

XOR C0

f

RTK0

α0

α1

...

αp−1

XOR C1

fM = s0

RTK1

α0

α1

...

αp−1

. . .

. . .

. . .

XOR C2

f

RTK2

XOR Cr−2

f

RTKr−2

α0

α1

...

αp−1

XOR Cr−1

f sr = C

RTKr−1

Figure 2.10: The tweakey schedule. f represents the round function OneRoundEGFN.

The tweakey schedule produces the r = 32 (36 or 42 respectively) 64-bit subtweakeys RTK0 to
RTKr−1 from the 128-bit (192 or 256 respectively) master key K and the tweak T that is 128 bits long
when Lilliput-TBC-II is used and 192 bits long tweak when Lilliput-TBC-I is used.

As done in the STK construction, at each round i ∈ {0, · · · , r − 1}, the inner state TKi is divided
into p = (t+ k)/64 lanes that we denote TKi

j , j ∈ {0, · · · , p− 1}, where k is the key length and t is the
tweak length. The values of p are shown in Table 2.5, depending on which version of Lilliput-TBC is
used.

Name k t p r
Lilliput-TBC-I-128 128 192 5 32
Lilliput-TBC-I-192 192 192 6 36
Lilliput-TBC-I-256 256 192 7 42
Lilliput-TBC-II-128 128 128 4 32
Lilliput-TBC-II-192 192 128 5 36
Lilliput-TBC-II-256 256 128 6 42

Table 2.5: Recommended parameter sets for Lilliput-TBC and associated number of tweakey lanes.

TK0 is initialized with the concatenation of the tweak T and the master key K. The first 2 (or 3)
lanes are thus dedicated to the 128-bit (or 192-bit) tweak. The key is then stored in the following 2, 3
or 4 lanes, depending on its size.

For each round i, the 8-byte subtweakey word that is produced is denoted RTKi:

∀i ∈ {0, · · · , r − 1}, RTKi = RTKi
7||RTKi

6||RTKi
5||RTKi

4||RTKi
3||RTKi

2||RTKi
1||RTKi

0,

where RTKi
j is the byte that is xored to block Xj then used as an input of the nonlinear function Fj in

the Lilliput-TBC round function of the encryption process.
The subtweakey word is obtained by xoring all p TKi

j lanes and a round-dependent constant denoted
Ci together. In our proposal, the round constant Ci is simply the round number i:

∀i ∈ {0, · · · , r − 1}, RTKi =

p−1⊕
j=0

TKi
j ⊕ i.

To update the tweakey, at each round i ∈ {1, · · · , r − 1}, each 64-bit lane TKi
j is multiplied by a

nonzero coefficient denoted αj , with j ∈ {0, · · · , p − 1}. These coefficients were carefully chosen such
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that in r consecutive rounds, at most (p− 1) cancellations occur as will be shown in Section 3.2. Next,
we describe how to generate the sequences induced by coefficients αj (j = 0, · · · , 6).

Sequences

The α-multiplications are computed using word-ring-LFSRs [7]. The sequences constructed as α-multipli-
cations for the tweakey on GF (264) using word-ring-LFSRs are the following ones: consider first a 64-bit
lane in byte notation as x = (x7, · · · , x0) where x7 is the most significant byte and x0 is the least
significant one. In binary notations, we obtain the following vector of 64 bits: x = (xb63, · · · , xb0). Thus,
we have α0 = M , α1 = M2, α2 = M3, α3 = M4, α4 = MR, α5 = M2

R and α6 = M3
R.

Then the sequence generated by α0 is produced using the ring-LFSR represented at byte level word
by the following matrix:

M =



0 Id 0 0 0 0 0 0
0 0 Id 0 0 0 0 0
0 0 S�3 Id 0 0 0 0
0 0 0 S�3 Id 0 0 0
0 0 0 0 0 Id 0 0
0 S�2 0 0 0 0 Id 0
0 0 0 0 0 0 0 Id
Id 0 0 0 0 0 0 0


where Id is the 8× 8 identity matrix. The primitive polynomial associated with this matrix is computed
as Det(I−M ·X) at binary level, which gives: x64 +x58 +x42 +x40 +x35 +x34 +x29 +x26 +x24 +x23 +
x19 + x10 + 1. The multiplication by α0 is then generated as (y7, · · · , y0)t = M · (x7, · · · , x0)t. Thus, we
have: (y7, · · · , y0)t = (x6, x5, x4 ⊕ x5 � 3, x3 ⊕ x4 � 3, x2, x1 ⊕ x6 � 2, x0, x7)t.

M2 =



0 0 Id 0 0 0 0 0
0 0 S�3 Id 0 0 0 0
0 0 S�6 M1 Id 0 0 0
0 0 0 S�6 S�3 Id 0 0
0 S�2 0 0 0 0 Id 0
0 0 S�2 0 0 0 0 Id
Id 0 0 0 0 0 0 0
0 Id 0 0 0 0 0 0


with M1 equal to the binary 8× 8 following matrix:

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0


then

M3 =



0 0 S�3 Id 0 0 0 0
0 0 S�6 M1 Id 0 0 0
0 0 0 M2 M1 Id 0 0
0 S�2 0 0 S�6 S�3 Id 0
0 0 S�2 0 0 0 0 Id
Id 0 S�5 S�2 0 0 0 0
0 Id 0 0 0 0 0 0
0 0 Id 0 0 0 0 0
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with M2 a binary matrix of size 8× 8 equal to

1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0


and finally

M4 =



0 0 S�6 M1 Id 0 0 0
0 0 0 M2 M1 Id 0 0
0 S�2 0 M3 M2 M1 Id 0
0 M4 S�2 0 0 S�6 S�3 Id
Id 0 S�5 S�2 0 0 0 0
0 Id 0 M5 S�2 0 0 0
0 0 Id 0 0 0 0 0
0 0 S�3 Id 0 0 0 0


with M3 a binary matrix of size 8× 8 equal to

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


M4 a binary matrix of size 8× 8 equal to

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


and M5 a binary matrix of size 8× 8 equal to

0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


To generate the three following sequences, we use the following matrices using the reciprocal primitive

polynomial of x64 + x58 + x42 + x40 + x35 + x34 + x29 + x26 + x24 + x23 + x19 + x10 + 1 equal to
x64 + x54 + x45 + x41 + x40 + x38 + x35 + x30 + x29 + x24 + x22 + x6 + 1.
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The outputs are then computed in the reverse order using the relation (y0, · · · , y7)t = MR·(x0, · · · , x7)t.
Note that the associated binary words are also written in the opposite way compared with the compu-
tations performed for M , M2, M3 and M4. It means that, in this case, at binary level, we have
x = (xb0, · · · , xb63) and xi = (xb8·i+0, · · · , xb8·i+7).

Thus, we have: (y0, · · · , y7)t = (x1, x2, x3 ⊕ x4 � 3, x4, x5 ⊕ x6 � 3, x6 ⊕ x3 � 2, x7, x0)t.

MR =



0 Id 0 0 0 0 0 0
0 0 Id 0 0 0 0 0
0 0 0 Id S�3 0 0 0
0 0 0 0 Id 0 0 0
0 0 0 0 0 Id S�3 0
0 0 0 S�2 0 0 Id 0
0 0 0 0 0 0 0 Id
Id 0 0 0 0 0 0 0



M2
R =



0 0 Id 0 0 0 0 0
0 0 0 Id S�3 0 0 0
0 0 0 0 Id S�3 M6 0
0 0 0 0 0 Id S�3 0
0 0 0 S�2 0 0 Id S�3

0 0 0 0 S�2 0 0 Id
Id 0 0 0 0 0 0 0
0 Id 0 0 0 0 0 0


with M6 a binary matrix of size 8× 8 equal to

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


and

M3
R =



0 0 0 Id S�3 0 0 0
0 0 0 0 Id S�3 M6 0
0 0 0 M7 0 Id M1 M6

0 0 0 S�2 0 0 Id S�3

S�3 0 0 0 S�2 0 0 Id
Id 0 0 0 0 S�2 S�5 0
0 Id 0 0 0 0 0 0
0 0 Id 0 0 0 0 0


with M7 is a binary matrix of size 8× 8 equal to

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


The periods of each sequence given by the word-ring-LFSRs produced by the previous matrices are

respectively: 264−1 for the sequences produced using M , M2,M4, MR, M2
R and 264−1

3 for the sequences
produced using M3 and M3

R.
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Chapter 3

Design Rationale and Security Analysis

In this chapter, we will detail the design choices we made for Lilliput-TBC and we provide a complete
security analysis regarding a wide variety of attacks.

3.1 Design Rationale of the Modes of Operation

3.1.1 ΘCB3
The OCB mode (Offset Codebook Mode) was designed by Phillip Rogaway, who took inspiration
from Charanjit Jutla’s IAPM (Integrity Aware Parallelizable Mode) [35]. The original authenticated-
encryption scheme has then been refined several times, leading to three named versions: OCB1 [49],
OCB2 [48] and OCB3 [39]. The main change introduced with OCB2 is the possibility to handle Associ-
ated Data (AD), while the modifications made in OCB3 are rather minor (mostly a change in the way
offsets are incremented). The OCB mode has many advantages, starting with the fact that it is paral-
lelizable and only requires one block cipher invocation per message block, in contrary to schemes like
GCM. In [39], Krovetz and Rogaway also introduced a tweakable block cipher generalization of OCB3
denoted ΘCB3, which is at the source of the mode used for our candidate Lilliput-I.

OCB is covered by the United States Patent No. 7,949,129, United States Patent No. 8,321,675,
United States Patent No. 7,046,802 and United States Patent No. 7,200,22. Still, it is unclear if ΘCB3
is also covered by patents. This lack of clarity is part of the reason why we selected Lilliput-II to be
our primary member.

Under the assumption that the underlying (tweakable) block cipher is secure as a strong-PRP (Pseu-
doRandom Permutation), OCB is provably secure and achieves confidentiality and authenticity. Confi-
dentiality means that an adversary cannot make the distinction between OCB outputs and random bits,
while authenticity (of ciphertexts) means that she cannot produce a valid nonce-ciphertext pair (different
from the ones she previously obtained). Note that the various variants of OCB are not designed to resist
to nonce reuse nor to enjoy beyond-birthday-bound security.

3.1.2 SCT-2
The Synthetic Counter in Tweak mode (SCT) was first devised at Crypto 2016 by Thomas Peyrin and
Yannick Seurin [44]. Few months later, the mode was slightly modified by the same authors associated
with Jérémy Jean and Ivica Nikolic to be used as a mode for one of the member of the family of
authenticated ciphers Deoxys v1. 41 [33], their submission to CAESAR (Competition for Authenticated
Encryption: Security, Applicability, and Robustness). The rearranged mode was named SCT-2, and the
corresponding authenticated cipher was coined Deoxys-II.

The difference between SCT and SCT-2 only lies in the way the tag is produced (the encryption part
is similar), a change that was done “in order to provide graceful degradation of security for authentication
with the maximal number of repetitions of nonce” [33].
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3.2 Design Rationale of Lilliput-TBC

When designing Lilliput-TBC from the block cipher Lilliput, our overall goal was to maximize
diffusion between nibbles or bytes while keeping reasonable implementation performances. This diffusion
could be measured using the notion of full diffusion delay of [8]. It will be denoted by d and corresponds
to the minimum number of rounds needed for all output bytes or nibbles to depend on all input bytes
or nibbles. It is closely related to some structural attacks such as impossible differentials or integral
attacks, as shown in [57, 8].

We decided to use the EGFN inferred in Lilliput [6] to reach this purpose because the full diffusion
delay of the EGFN of Lilliput is equal to d = 4 which is the best diffusion delay obtained for a
Feistel-like scheme.

We chose a 128-bit state as it is consistent with the NIST requirements. We split that state into 16
bytes so that the block size matches the S-box size, i.e. the non-linear layer is made only of 8 parallel
calls to an 8-bit S-box and 8 subkey additions. As said before, the π permutation has been chosen to
maximize the number of active S-boxes on 18, 19 and 20 rounds (see Section 3.4 and Table 3.2 for more
details).

From those results and the security analysis performed in Section 3.4 and summed up in Table 3.5,
we also deduced the number of rounds of each instance of Lilliput-I and of Lilliput-II equal to 32,
36 or 42 rounds.

3.2.1 The EGFN Structure
As done in [57, 8], we analyze here the security of our underlying EGFN scheme regarding the pseudoran-
domness of the scheme. Note that the pseudorandomness bounds obtained are generic and essentially
depend on the d value. We thus introduce the pseudo-random-permutation advantage (prp-advantage)
and the strong-pseudo-random-permutation advantage (sprp-advantage) of an adversary. For this pur-
pose, we introduce the two advantage notations as:

Advprp
C (q) = max

A:q-CPA
∣∣Pr[AC = 1]− Pr[APn = 1]

∣∣ (3.1)

Advsprp
C (q) = max

A:q-CCA
|Pr[AC,C−1

= 1]− Pr[APn,P
−1
n = 1]| (3.2)

where C is the encryption function of an n-bit block cipher composed of Uniform Random Functions
(URFs) as internal modules whereas C−1 is its inverse; Pn is an n-bit Uniform Random Permutation
(URP) uniformly distributed among all the n-bit permutations; P−1

n is its inverse. The adversary, A,
tries to distinguish C from Pn using q queries in a CPA (Chosen Plaintext Attack) and tries to distinguish,
always using q queries, (C,C−1) from (Pn,P

−1
n ) in a CCA (Chosen Ciphertext Attack). The notation

means that the final guess of the adversary A is either 0 if A thinks that the computations are done using
Pn, or 1 if A thinks that the computations are done using C. The maximums of Equations (3.1,3.2) are
taken over all possible adversaries A with q queries and an unbounded computational power.

To prove the bounds of our scheme in those models, we recall the result proved in [6]: let Φkc,r denote
our k-block scheme acting on c-bit blocks with n = kc, using r rounds and with diffusion delay d. We
then have (the proof can be found in [6]):

Theorem 1 Given the r-round EGFN Φkc,r with k branches acting on c-bit blocks with a diffusion delay
d where all c-bit round functions are independent URFs. Then we have:

Advprp
Φkc,d+2

(q) ≤ kd

2c
q2 (3.3)

Advsprp
Φkc,2d+2

(q) ≤ kd

2c−1
q2 (3.4)

Thus, we have a classical security proof for the choice of the underlying EGFN used in Lilliput-TBC.
Note that, in our case, c is equal to 8.
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3.2.2 The π Permutation
Full diffusion delay is closely related to some structural attacks such as impossible differentials or integral
attacks, as shown in [57, 8]. As there are many EGFNs that achieve d = 4, we chose one by taking other
considerations into account. Specifically, we chose the block-wise permutation to maximize resistance
against differential and linear cryptanalysis.

We identified the criterion for a permutation π to achieve d = 4 to be as follows: first, π must swap
the 8 right-most blocks with the 8 left-most, and second, π must specifically swap blocks Y7 and Y15 (a
complete proof could be found in [8, 6]).

Up to block reindexing equivalence, there are exactly 37108 such permutations. For each of them, we
computed the minimal number of differentially and linearly active S-boxes up to 20 rounds (see Section
3.4.1 and Table 3.2 for more details) and picked the one that maximizes the number of active S-boxes
on 18, 19 and 20 rounds.

3.2.3 The S-box
Overall structure

We chose to build the 8-bit S-box from smaller ones so that it could be implemented with a fewer number
of gates, which is a valuable property for hardware and bit-sliced software implementations. S-boxes built
in this fashion usually rely on one of the four constructions depicted in Fig 3.1. We defined the following

S4

(a) Feistel

S4

(b) MISTY

S4

(c) Lai-Massey

S4 S′4

A

(d) SPN

Figure 3.1: Some structures to build 2n-bit S-boxes from n-bit ones.

selection criteria for the candidate S-box:

- Differential uniformity δ ≤ 10

- Linearity L ≤ 64

- Algebraic degree deg ≥ 6 .

All constructions discussed above need to be iterated several times in order to achieve the desired
cryptographic properties. Regarding Feistel and MISTY networks, [17] gives lower bounds on the differ-
ential uniformity and linearity for 3-round balanced constructions. In this case, Feistel networks provide
better cryptographic properties as it is possible to reach δ = 8 and L = 64 versus δ = 16 and L = 64
for MISTY networks. It comes from the fact that Feistel networks do not require inner 4-bit S-boxes to
be permutations, allowing the use of Almost Perfect Nonlinear (APN) functions as inner components.
Still, it has been shown that 3-round unbalanced MISTY networks (e.g., dividing the 8-bit input into
two inequal parts of 3 and 5 bits) can be used to build 8-bit S-boxes with δ = 8 [17]. However, because
the unbalanced words induce components with strong unbalanced degrees for the ANF, we decided to
rule out this option.

Regarding the Lai-Massey scheme, the family of block ciphers FOX [34] uses a 3-round iterated
structure in order to build an 8-bit S-box with δ = 16 and L = 64. On the other side, some cryptographic
primitives simply add a nonlinear layer (i.e. two 4-bit S-boxes in parallel) at the beginning and/or at the
end of the original scheme depicted in Fig. 3.1c instead of using an iterated structure and therefore save
some XOR gates. For instance, the block cipher FLY [36] adds a nonlinear layer at the end of the scheme
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while the hash function Whirlpool [3] also adds one at the beginning resulting in a total of three and
five inner 4-bit S-boxes, respectively. As for the MISTY ladder, the Lai-Massey structure requires inner
4-bit S-boxes to be permutations and therefore constructions that use three 4-bit S-boxes cannot reach
a differential uniformity as good as Feistel networks. Although the cryptographic properties achieved
by the variant using five 4-bit S-boxes are compliant with our selection criteria (i.e. δ = 8, L = 56 and
deg = 7 for the Whirlpool S-box), it is not worth the implementation cost.

The same reasoning can be applied to SPNs. For instance, the block cipher CLEFIA [55] uses two
different 8-bit S-boxes and one of them relies on an SPN structure as defined in Fig. 3.1d with an
additional nonlinear layer after A which refers to a matrix multiplication over F16. It results in an S-box
with δ = 10, L = 56 and deg = 6 which is compliant with our selection criteria. However, because it
uses four 4-bit S-boxes, it is more heavy than a 3-round Feistel network to implement.

For all these reasons, we opted for an 8-bit S-box based on a 3-round balanced Feistel network. In
the rest of this section, Si4 refers to the inner 4-bit S-box at the i-th round.

Inner 4-bit S-boxes

According to [17], in order to reach δ = 8, S1
4 and S3

4 have to be APN functions while S2
4 has to be

a permutation with differential uniformity 4. The authenticated block cipher SCREAM [26] uses an 8-
bit S-box built in this manner where the underlying APN functions are S1

4 = 020b300a1e06a452 and
S3

4 = 20b003a0e1604a25 and the permutation is S2
4 = 02c75fd64e8931ba.

S1
4 can be implemented using 11 instructions in total (either AND or OR or XOR or NOT or MOV), including

4 non-linear ones, while S3
4 is directly derived from it by adding a NOT instruction in order to avoid fixed

points. Although it is possible to find APN functions over F16 that are built using 10 instructions from
the same instruction set, they all require at least 6 non-linear ones [17] which is not optimal regarding
masked implementations. S2

4 is built using 9 instructions from the same instruction set, including 4
non-linear ones, which is the smallest implementation cost for a 4-bit S-box with differential uniformity
4 [60]. Therefore, the SCREAM S-box allows very efficient implementations with and without masking
as it only requires 44 instructions in total including 12 non-linear ones.

However, the number of non-linear operations is not the only criteria regarding Threshold Imple-
mentations (TI) where an S-box with algebraic degree d requires at least n = d + 1 shares. In order to
limit the number of shares for a 4-bit S-box with d > 2, it has been proposed to use its decomposition
into quadratic bijections [43] (i.e. Si4 = F ◦ G) so that it is possible to achieve a TI with n = 3. In
order to fulfill the uniformity criteria, it has been proposed to find affine functions A1 and A2 such that
F = A1 ◦ Q ◦ A2, so that when it is possible to achieve a uniform sharing of the quadratic function Q,
applying A1 and A2 on all input and output shares respectively gives a uniform sharing of F [11].

In [15] the authors study first-order TIs for several 8-bit S-boxes, including the one used in SCREAM.
It results that the two APN functions S1

4 and S3
4 can be directly decomposed into two quadratic functions

while the permutation S2
4 requires affine functions as described above. In order to achieve more efficient

TIs by saving the implemention cost of the affine functions, we looked for (and found) alternatives to S2
4

that could be directly decomposed into two quadratic functions.
We chose to investigate all possible circuits with a Breadth-First Search (BFS) approach, including

only AND, XOR and NOT gates as they can be straightforwardly thresholded. This approach is very similar
to [60]. We optimized the number of gates used without considering MOV instructions as we consider that
wiring is free compared to the cost of the gates. We allowed 5 registers during the exploration. Keeping
the affine equivalence notion of the previous paper, stopping the exploration to 8 gates allowed us to
reach 62 affine equivalence classes, including 3 optimal classes according to [50]. Following the same
notation as [11] to refer to the equivalence classes, the three optimal classes we reached are C223, C296

and C297.
We focused on permutations of the optimal classes as they are the only ones with differential unifor-

mity equal to 4. First, we eliminated candidates that did not allow to reach the selection criteria for the
8-bit S-box when used as S2

4 in a 3-round Feistel network. After this step, there were still candidates in
each optimal class. In order to go further into the optimization of TIs, we investigated the decomposition
of the remaining candidates. Following [11], we decomposed those cubic permutations into two quadratic
functions. There are six quadratic classes denoted by Q4, Q12, Q293, Q294, Q299 and Q300. It results
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from our BFS exploration that these classes can be implemented with a minimum of 2, 4, 6, 4, 6 and 6
gates, respectively. Among these classes, only Q4, Q294 and Q299 contain permutations that are uniform
using direct sharing. However, neither C223 nor C296 nor C297 can be decomposed using Q4. On the
other hand, because only C223 can be decomposed into two quadratic functions of the class Q294 that are
uniform using direct sharing, this makes C223 the most interesting optimal class we reached regarding
TIs.

As stated before, contrary to S2
4 , our aim was to avoid linear permutations between the quadratic

functions. As we consider that wire permutations ωi are free, for all the remaining candidates C in
C223, we looked for 4-gate circuits Qi and Qj of Q294 that are uniform using direct sharing, such that
C = ω1 ◦Qi ◦ω2 ◦Qj ◦ω3 . As a final step to determine which composition to use, we calculated the cost
(considered in Gate Equivalents − GEs) of a 3-share TI of all of them using this formula:

GE = 3GEX ·X + (6GEX + 9GEA) ·A+GEN ·N (3.5)

with GEX the area and X the number of XOR gates, GEA the area and A the number of AND gates and
GEN the area and N the number of NOT gates. It comes from the fact that, when considering 3-share
TIs, thresholding an XOR gate requires 3 XOR gates while thresholding an AND gate requires 6 XOR and 9
AND gates. Taking GEX = 8

3 , GEA = 4
3 and GEN = 2

3 , we found the minimum at 72 ·2 = 144GEs. Note
that it does not include the cost of registers between the two permutations that are needed to ensure
security against glitches.

Among the several compositions that can be implemented using 144GEs, we chose the permutation
illustrated in Fig. 3.3b as it constitutes the only candidate that results from the composition of the same
quadratic permutation Q = 042e8ca6173d9fb5, allowing to optimize the area cost in particular cases.

a b c d

x y z t

(a) F = 020b30a01e06a425

a b c d

x y z t

(b) G = 0123457689abcdfe

a b c d

x y z t

(c) Q = 042e8ca6173d9fb5

Figure 3.2: Quadatric functions used to build the cubic 4-bit S-boxes.

To put it in a nutshell, our 8-bit S-box is obtained by combining the two APN functions from the
SCREAM S-box with the 4-bit permutation S̄2

4 = 081f4c792b36e5da in a 3-round Feistel network and
achieves δ = 8, L = 64 and deg = 6 without fixed points. Thanks to the BFS exploration, we ensure
that our S-box requires a small number of gates and that its TI is efficient as it uses the smallest circuits
of its possible decompositions and futhermore, it does not require the use of affine permutations when
decomposed into two quadratic functions. The 4-bit S-boxes are depicted in Fig. 3.3 while the underlying
quadratic functions are depicted in Fig. 3.2, where a and d refer to the most and the least significant
bits, respectively.
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a b c d

x y z t

(a) S1
4 = F ◦G

020b300a1e06a452

a b c d

x y z t

P

(b) S̄2
4 = Q ◦ P ◦Q

081f4c792b36e5da

a b c d

x y z t

(c) S3
4 = F ◦ (⊕1) ◦G

20b003a0e1604a25

Figure 3.3: The three inner 4-bit S-boxes.

3.2.4 The Tweakey Schedule
As done for some other Tweakable Block Ciphers, we first looked at the TWEAKEY construction of [32]
that fills p lanes of n bits divided into m words of c bits with the concatenation of the tweak T and of the
key K. Then, to produce the subtweakey of each round, the TWEAKEY framework applies, on each lane, a
permutation h acting on the m words and then multiply each of the m elements of c bits by a primitive
root αi,∀i ∈ {0, · · · , p − 1} over GF (2c) different for each lane. Then, the subtweakey is the XOR of
the p lanes and of a constant. From this construction that could be seen as the tensorial product of m
Vandermonde matrices, the authors could deduce that the number of cancellations on r+ 1 subtweakeys
is at most equal to (p − 1). Indeed, the updating function (excluding the h permutation) for the c bits
words could be written as the following Vandermonde matrix

V =


α0

0 α1
0 α2

0 · · · αr0
α0

1 α1
1 α2

1 · · · αr1
α0

2 α1
2 α2

2 · · · αr2
...

...
...

. . .
...

α0
p−1 α1

p−1 α2
p−1 · · · αrp−1


when all αi with 0 ≤ i ≤ r are distinct considering that r < ord(α). In this case, the code defined

by V is a Reed-Solomon code of length r + 1 and dimension p over GF (2c) and it is known to be MDS
(Maximum Distance Separable). It means that its minimum distance is equal to r + 1− (p+ 1).

For designing our own tweakey schedule, we adopted the same idea to keep the Vandermonde strategy
in order to guarantee the maximal possible number of cancellations. However, as we wanted to reduce
the latency of the tweakey schedule and thus the number of computations, we adopted the following
strategy instead of considering a lane as a vector of m elements of GF (2c): we directly consider the field
GF (2cm) that will be equal in our case to GF (264). Indeed, in our case, the size of each lane is equal to
n
2 = 64 bits due to the use of a Feistel-like scheme requiring only n

2 = 64 bits of tweakey injected in the
round function at each iteration.

Thus, we consider the p 64-bit long lanes as p elements of GF (264) and we multiply each lane by p
different αi given in Section 2.3.3 in a byte oriented matrix representation. Thus, with our construction,
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we obtain the following Vandermonde matrix constructed on GF (264):

V ′ =


α0

0 α1
0 α2

0 · · · αr−1
0

α0
1 α1

1 α2
1 · · · αr−1

1

α0
2 α1

2 α2
2 · · · αr−1

2
...

...
...

. . .
...

α0
p−1 α1

p−1 α2
p−1 · · · αr−1

p−1


Thus, as ∀0 ≤ i < r, we have chosen the αi such that r < ord(αi), we preserve the MDS property induced
by the underlying Reed-Solomon code and guarantee that the minimum distance is equal to r − (p+ 1)
leading to at most (p− 1) cancellations on r subtweakeys, seen always, as the XOR of the p lanes. This
last choice is a logical one as done in many lightweight block ciphers, such as PRESENT [14], TWINE
[58], LBlock [62] or SIMON [4] where the tweakey/key material is loaded in an initial register that is
sequentially updated and where the subtweakeys/subkeys are extracted from that register.

We also chose to split the tweakey into p lanes of 64-bit instead of having a big state of p × 64 bits
and to update in parallel those p registers because small updating functions mix their content faster and
increase performance. The downside is that each updating function could be attacked independently if
their contents were not combined back during the subtweakey extraction which is not the case here.

Let us now explain how we have chosen the different αi and the word-ring-LFSRs matrix multiplica-
tions at binary level that perform those operations.

We used LFSRs inspired by the results of [7] and [1] on LFSRs. LFSRs are typically used either
in Fibonacci or Galois mode. In the first case, many feedbacks are used to influence a single cell while
in the second case a single feedback influences many cells. In [7], the authors generalize LFSR beyond
Fibonacci/Galois representation by allowing any cell to be used as feedback in any other cell. They call
these new LFSRs “ring-LFSRs” because of the rotation occuring at each update. As the LFSRs in [1],
the LFSRs chosen here have also a word-oriented structure: instead of performing bit-wise shift at each
iteration and having binary feedbacks, they are shifted by one word at each update. As for the feedbacks,
they are also word-oriented: one whole word is xored to another after possibly being transformed by
a software-friendly operation such as shift or rotation. Those LFSRs are called word-LFSRs by their
authors [1]. When a LFSR is both a word and ring LFSR, we call it a word-ring-LFSR. At the same time,
they act at word level and they have feedbacks going from some word to some other. Word-ring-LFSRs
have thus a smaller diffusion delay than classical Fibonacci or Galois LFSRs.

We have chosen our word-ring-LFSR defined by the matrix M for the α0-multiplication with the
minimal possible number of shift operations (3 at 8 bits words level) to minimize the number of XOR
gates, with a primitive polynomial of degree 64. We chose words of size 8 bits to fit well on software
platforms. Then, α1, α2 and α3 multiplications are deduced directly using M2, M3 and M4.

Moreover, to construct the matrix MR for the α4 multiplication, we searched for a matrix with 3
shift operations implementing the reciprocal (primitive) polynomial that defines M to ensure that the
matrix V ′ stays a Vandermonde matrix and that the sequences produced when multiplying by α0 (α1,
α2 and α3 respectively) and α4 (α5 and α6 respectively) have only a single common value.

We have also chosen the different αi with a primitive retroaction polynomial to ensure that the
induced periods are maximal: the period for α0, α1, α3, α4 and α5 is maximal and equal to 264 − 1

whereas the period for α2 and α6 is equal to 264−1
3 .

Moreover, with this design strategy in mind, we are sure that the entire possible space is reached
discarding the risk of an invariant attack as detailed in Section 3.4.
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3.3 Security Analysis of the Modes of Operation

3.3.1 ΘCB3
The past year has seen several breakthroughs in the analysis of OCB, starting in October 2018 with
the description by Inoue and Minematsu of a practical existential forgery attack [29]. Few weeks after,
Poettering [45] extended this result and broke the confidentiality of OCB2, result that was extended
further by Iwata [30] who devised a plaintext recovery attack1. These attacks were clearly announced by
their authors as not applicable to OCB1 and OCB3, so ΘCB3 is also safe. To the best of our knowledge,
no attacks were devised on ΘCB3.

3.3.2 SCT-2
To the best of our knowledge, no flaws were found so far in SCT-2 and the results published on Deoxys [63,
41, 18] only target the underlying cipher (that is, Deoxys-BC). In [18], the authors briefly discuss if their
attacks on Deoxys-BC could apply once the cipher is used in the corresponding mode, and “argue that
[their] attacks are difficult to extend to Deoxys-II”. This seems to indicate that the SCT-2 mode does
not induce additional flaws to a cipher but on the contrary results in an extra protection coming from
the fact that the attacker cannot access the decryption primitive.

To further support that the mode SCT-2 is trusted by the community, we recall here that Deoxys-II
was selected after a 5-year process as the first choice for use case 3 ("Defense in depth") in the final
Caesar portfolio [16].

3.3.3 Security Claims for the Modes
Our security claims for the different variants of Lilliput-AE are provided in Table 3.1.

Security (bits)
Goal (nonce-respecting case) Lilliput-I Lilliput-II

Key recovery k k
Confidentiality for the plaintext n n− 1

Integrity for the plaintext n n− 1
Integrity for the associated data n n− 1

Security (bits)
Goal (nonce-misuse case) Lilliput-I Lilliput-II

Key recovery k k
Confidentiality for the plaintext none n/2

Integrity for the plaintext none n/2
Integrity for the associated data none n/2

Table 3.1: Security goals of Lilliput-AE in the nonce-respecting case and in the nonce-misuse case.

The bounds are given in the case of a tag size τ ≥ n. Should a smaller tag size be used, the security
claims will drop according to τ . We derived the security bounds from the security proofs of ΘCB3 [39]
and SCT [44] and we refer to them for more details.

3.4 Security Analysis of Lilliput-TBC

We analyze the security of Lilliput-TBC regarding classical attacks in the unknown key model and
also in the related key model always considering the related tweak model. We will place ourselves for all

1These three results have been recently merged together in [28]
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the attacks in the so-called “paranoid” ’ case, where the worst case is always envisaged even if it could
not be reached.

Thus, we divide this section in the following way: we first consider differential/linear cryptanalysis,
thus, extending those first results to the case of related key boomerang attacks and then, we give overall
bounds for the so-called structural attacks that include impossible differential attacks, zero-correlation
attacks, integral attacks and meet-in-the-middle attacks. Then, we take a particular attention on the
following special attacks: division property, subspace cryptanalysis, algebraic attack.

Thus, we will first introduce the following bounds that will be used in the rest of this section:

• As the full diffusion is reached after d = 4 rounds for Lilliput-TBC, it means that no structural
distinguisher can be constructed for more than 2d + 2 rounds (see [8] for a detailed analysis and
the security proofs).

• We will also always consider that the number of rounds that can be added to the best distinguisher
for the key recovery part at the beginning is equal to d and at the end is also equal to d. Indeed, if
a property is found on a single byte at the beginning or at the end of the distinguisher then after
d rounds, all the input/output bytes will be influenced, so a key recovery could not exceed those
bounds.

• As the tweakey schedule is fully linear and based on the XOR of elements of a Vandermonde matrix,
it means that by reversing the linear system, one is able to find in the related tweak/related key
models (p− 1) cancellations (when p lanes are considered) placed at the best for the attacker.

First, let us precise that to prevent slide attacks [12] and as usually done in other tweakable block
cipher proposals, different round constants are added to each subtweakey during the tweakey schedule
process. So, we consider Lilliput-TBC immune to slide attacks.

3.4.1 Differential / Linear Cryptanalysis
To prove the resistance of Lilliput-TBC against differential and linear cryptanalysis, we give in Ta-
ble 3.2 the lower bounds on the minimal number of active S-boxes in the single tweakey model considering
no difference in the tweak. Those bounds partly fit with the ones given in [51] for the block cipher Lil-
liput. We have obtained those results using Constraint Programming up to 20 rounds in the single
tweakey model. Due to the complexity of the tweakey schedule, we could not derive bounds for the re-
lated tweakey models (note that the related tweakey models are not considered for linear cryptanalysis).
However, we could place ourselves in the worst case saying that authorizing a particular difference in a
single lane i means that the results given in Table 3.2 on r rounds apply for r + 2 rounds, in two lanes
i and j means that the results given in Table 3.2 on r rounds apply for r + 3 rounds, and so on up to p
lanes are activated.

Moreover, we use here the fact that, as mentioned in Section 3.2.3, we have δ = 2−5 and L = 64 for
the chosen S-box.

Thus, with this reasoning, we could derive the following bounds for the different key lengths on the
best differential/linear attacks:

• Lilliput-TBC-I-128 (t = 192, k = 128):

– Best differential distinguisher on 13 rounds when no difference are introduced at all in the
tweakey. Best possible differential attack on 13 + d + d = 13 + 8 = 21 rounds in the same
context. If a difference is introduced in b lanes, then the best attack is on 21 + b+ 1 rounds,
leading to the best possible differential attack when the p lanes have differences equal to
21 + 5 + 1 = 27 rounds.

– With the same reasoning, the best linear distinguisher is on 16 rounds. Then, the best possible
linear attack is on 16 + d+ d = 16 + 8 = 24 rounds.

• Lilliput-TBC-I-192 (t = 192, k = 192):

– Best differential distinguisher on 17 rounds when no difference are introduced at all in the
tweakey. Best possible differential attack on 13 + d + d = 17 + 8 = 25 rounds in the same

28



context. If a difference is introduced in b lanes, then the best attack is on 25 + b+ 1 rounds,
leading to the best possible differential attack when the p lanes have differences equal to
25 + 6 + 1 = 32 rounds.

– With the same reasoning, the best linear distinguisher is on 23 rounds (extrapolating the
results of Table 3.2 up to 48 active S-boxes). Then, the best possible linear attack is on
23 + d+ d = 23 + 8 = 31 rounds.

• Lilliput-TBC-I-256 (t = 192, k = 256):

– Best differential distinguisher on 24 rounds when no difference are introduced at all in the
tweakey (always extrapolating the results of Table 3.2 up to 51 active S-boxes). Best possible
differential attack on 24 + d+ d = 24 + 8 = 32 rounds in the same context. If, a difference is
introduced in b lanes, then the best attack is on 32 + b+ 1 rounds, leading to the best possible
differential attack when the p lanes have differences equal to 32 + 7 + 1 = 40 rounds.

– With the same reasoning, the best linear distinguisher is on 30 rounds (extrapolating the
results of Table 3.2 up to 64 active S-boxes). Then, the best possible linear attack is on
30 + d+ d = 30 + 8 = 38 rounds.

• Lilliput-TBC-II-128 (t = 128, k = 128): The bound for the differential distinguisher is the same
than the one given for Lilliput-TBC-I-192: the best differential attack works on 21 rounds for
the single tweakey model and on 26 rounds when the p lanes have differences. The bound for the
linear cryptanalysis is the same than the one given for Lilliput-TBC-I-192: 24 rounds.

• Lilliput-TBC-II-192 (t = 128, k = 192): The bound for the differential distinguisher is the same
than the one given for Lilliput-TBC-I-192: the best differential attack works on 25 rounds for
the single tweakey model and on 31 rounds when the p lanes have differences. The bound for the
linear cryptanalysis is the same than the one given for Lilliput-TBC-I-192: 31 rounds.

• Lilliput-TBC-II-256 (t = 128, k = 256): The bound for the differential distinguisher is the same
than the one given for Lilliput-TBC-I-256: the best differential attack works on 32 rounds for
the single tweakey model and on 39 rounds when the p lanes have differences. The bound for the
linear cryptanalysis is the same than the one given for Lilliput-TBC-I-256: 38 rounds.

Table 3.2: Minimal number of active S-boxes for every round. ASD corresponds to the minimal number
of S-boxes reached for a differential attack. ASL corresponds to the minimal number of S-boxes reached
for a linear attack.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ASD 0 1 2 3 5 9 12 15 17 19 22 24 25 28 29 31 34 40 41 43
ASL 0 1 2 3 5 8 12 13 15 17 19 22 25 27 30 32 34 38 40 42

3.4.2 Related Tweakey Boomerang Attacks
As the attacker could introduce differences both in the tweak and in the key and as our tweakey schedule
is linear and could be completely computed according the introduced differences, we could imagine that
in a related tweakey boomerang attack, the attacker could find a forward differential trail with (p − 1)
rounds containing no difference and could also find a backward differential trail with (p − 1) rounds
without difference. Thus, always considering that the key recovery part at the top of the related tweakey
boomerang distinguisher has d = 4 rounds and also d = 4 rounds at the bottom, we could construct a
related tweakey boomerang attack containing 2 · (p− 1) + 8 rounds at the beginning and at the end, and
b rounds in its middle part.

Let us determine how many rounds is b for the different key lengths and considering that between the
first differential trail on E0 and the second differential trail on E1 with e = E1 ◦ E0, we have 2 rounds
for free, one because the best coefficient of the BCT is equal to 1 and one because Lilliput-TBC is a
Feistel-like scheme. Thus, as in a related tweakey boomerang attack, we associated the probability p
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of the differential trail for E0 and q for the differential trail for E1. Thus, we expect that the overall
probability for b− 2 rounds is p2q2.

Thus, for a 256-bit key, we want p2q2 ≤ 2−256 considering that using several keys and several tweaks
we could go beyond the full codebook limit. This leads to p ≤ 2−64 considering that p = q. Thus, referring
to Table 3.2 with δS = 2−5, the differential trail for E0 has at most 64/5 = 12.8 active S-boxes leading to
a differential propagating on at most 7 rounds. We apply the same reasoning for E1. Thus, the maximal
number of rounds a related tweakey boomerang attack could reach is equal to 7+7+8+2·(p−1)+2 = 36
for Lilliput-TBC-I-256 and to 7 + 7 + 8 + 2 · (p− 1) + 2 = 34 for Lilliput-TBC-II-256.

Thus, for a 192-bit key, we want p2q2 ≤ 2−192. This leads to p ≤ 2−48 considering that p = q and
to 48/5 = 9.6 active S-boxes for both E0 and E1 leading to a differential propagating on at most 6
rounds. Thus, the maximal number of rounds a related tweakey boomerang attack could reach is equal
to 6 + 6 + 8 + 2 · (p − 1) + 2 = 32 for Lilliput-TBC-I-192 and to 6 + 6 + 8 + 2 · (p − 1) + 2 = 30 for
Lilliput-TBC-II-192.

Thus, for a 128-bit key, we want p2q2 ≤ 2−128. This leads to p ≤ 2−32 considering that p = q and
to 32/5 = 6.4 active S-boxes for both E0 and E1 leading to a differential propagating on at most 5
rounds. Thus, the maximal number of rounds a related tweakey boomerang attack could reach is equal
to 5 + 5 + 8 + 2 · (p − 1) + 2 = 28 for Lilliput-TBC-I-128 and to 5 + 5 + 8 + 2 · (p − 1) + 2 = 26 for
Lilliput-TBC-II-128.

3.4.3 Structural Attacks
In this Subsection, we consider all the so-called structural attacks which include impossible differential
attacks [10], zero-correlation attacks [13], integral attacks [19] and meet-in-the-middle attacks [20]. The
security analysis of those attacks mainly depend on the diffusion delay d of the scheme as shown in
[8, 57]. Indeed, no distinguisher could be found for structural attacks beyond 2d + 2 rounds as full
diffusion is reached. Those notions are also mainly linked with the computation of the super-pseudo
random permutation advantage of the underlying scheme as shown in [27, 8].

Thus, in the single tweakey model where no difference at all is injected through the tweakey schedule,
the best distinguisher could be constructed on 2d+ 2 rounds. To complete the attack, we could add for
the key recovery part d rounds at the top of the distinguisher and d rounds at the bottom leading to a
structural attack with a maximum of 4d + 2 rounds. For all instances of Lilliput-TBC, this leads to
the possibility of covering at most 18 rounds for all the structural attacks considered here. Note that
this bound is overestimated compared to the one provided in [52] concerning the particular case of an
impossible differential attack on the block cipher Lilliput.

Moreover, in the related tweakey model where we consider that an adversary can control at most the
content of p lanes, the adversary could directly in this context attack 4d+2+p rounds at most. This leads
to the following upper bounds on the possible number of attacked rounds for the 6 instances of Lilliput-
TBC: 22 rounds for Lilliput-TBC-II-128, 23 rounds for Lilliput-TBC-II-192 and Lilliput-TBC-
I-128, 24 rounds for Lilliput-TBC-II-256 and Lilliput-TBC-I-192, 25 rounds for Lilliput-TBC-
I-256.

3.4.4 Division Property
The division property was proposed by Todo [59] as a generalization of the integral property to correctly
evaluate higher-order integral property. The best division distinguisher described in [53] on the block
cipher Lilliput is on 13 rounds leading to a key recovery attack on 17 rounds in the single tweakey
model. Note that the Linear procedure presented in Algorithm 1 of [53] is the same for Lilliput-
TBC, only the NonLinear part diverges in the way to compute the sets. The distinguisher presented
in [53] studies an integral property on 63 input bits and on 1 output bit that completely maximize the
possible number of implied bits. Thus, we conjecture that there is no distinguisher that exploits division
properties on more than 26 rounds of Lilliput-TBC as in this last case, the number of possible input
bits implied in a division property is doubled, i.e. equal to 127 with the same procedure describing the
linear part. Thus, we are still confident that our proposals offer a strong security margin regarding this
class of attacks.
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3.4.5 Subspace Cryptanalysis
Invariant subspace cryptanalysis uses affine subspaces that are invariant throughout the cipher. Those
attacks work particularly well in the context of simple tweakey/key schedules where the invariant prop-
erties stay valid through the key addition. Thus, to avoid this kind of attacks, invariant subspaces must
be destroyed by the key/tweakey schedule. As the tweakey schedule of Lilliput-TBC is composed of
ring-LFSRs ranging all the possible spaces, we conjecture that our non-trivial tweakey schedule provide
a good protection against those attacks.

However, we give here the 9 linear structures of our S-box, i.e. the list (b, a, c) such that b · (S(x)⊕
S(x ⊕ a)) = c with c a constant: (1, 32, 1), (1, 64, 0), (1, 96, 1), (4, 64, 1), (4, 128, 0), (4, 192, 1), (5,
64, 1), (5, 160, 1), (5, 224, 0). Note that none of those structures is preserved through two applications
of the S-box.

Thus, with our non-trivial tweakey schedule and the fact that the invariant subspaces deduced from
the linear structures can not be chained for many rounds, we conjecture that Lilliput-TBC is immune
against this kind of attacks.

3.4.6 Algebraic Attacks
Before deducing bounds for algebraic attacks, let us describe the algebraic properties of the S-box. The
S-box has a maximal degree of 6 and a minimal degree of 4. Our S-box could also be described using
e = 14 quadratic equations in the 16 input/output variables over GF (2). Thus, from Table 3.2, we could
see that for 13 rounds, we have 26 active S-boxes, it means that, from this bound the number of induced
variables by the algebraic expression of the cipher Lilliput-TBC is greater than the block size.

Moreover, as our S-box S could be described with 14 quadratic equations in 16 variables, it means
that the number of quadratic equations induced by a round is 14 × 8 = 112 quadratic equations in
16× 8 = 128 variables and for 32 rounds of Lilliput-TBC, we thus obtain 3584 quadratic equations in
4096 variables. Thus, we obtain an under-determined system with more variables than for the AES.

Using those arguments, we conjecture that Lilliput-TBC is immune against algebraic attacks.

3.4.7 Differential Fault Analysis in Middle Rounds
We want to protect Lilliput-TBC against differential fault analysis. Such attacks consist in injecting
faults in one of the last rounds of the encryption, and exploit pairs of faulty and correct ciphertexts.
A common countermeasure consists in doubling the execution of a few last rounds in order to detect a
fault. In the case of a fault injection – unless the attacker is able to inject twice the same fault in a
very short period of time – the doubling results in two ciphertexts, one faulty and the other not. Such a
result is detected and no output is given. In order to be detected, the fault must be injected during the
rounds that are doubled. If a fault occurs before, the faulty state is copied and processed twice, resulting
in two identical faulty ciphertexts which will be outputted, making the countermeasure ineffective. For
this reason, it is important to protect enough rounds to prevent such attacks. It is also important to
evaluate closely the number of rounds to protect as doubling increases time computation or surface area.

We analyze how much rounds must be protected in order to prevent the attack from Rivain [47]
adapted to Lilliput-TBC. This attack takes advantage of the Feistel scheme in order to inject fault in
middle rounds and observe differential distributions in the last one.

As Lilliput-TBC is based on a Feistel scheme, we will denote the state at output of round i as
(Li, Ri), Li and Ri being its 64-bit left and right parts respectively2. Hence, the plaintext is (L0, R0),
and the ciphertext (Lr, Rr). The fact that the number of rounds r changes with the mode used does not
change anything about the following results, as r is always greater than the number of rounds to protect.
Notice that the subtweakey byte used in each non linear function Fj of Lilliput-TBC (0 ≤ j ≤ 7)
is the XOR of a known constant and p byte values (4 ≤ p ≤ 7) that come from some known tweak-
dependent lanes and other unknown key-dependent ones. The following analysis focuses on retrieving
this subtweakey byte value only, leaving uncertainty about key-lane bytes. A "successful" attack thus
leaves the attacker with 28 pairs of key-dependent bytes (or 216 triplets or 232 quadruplets, depending
on the key length).

2With notations of Section 2.3.1 we have L = (X15, . . . , X8) and R = (X7, . . . , X0).
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As in [47] we only consider faults in the left part of the state as it is the most efficient way to retrieve
the subkey in a Feistel scheme. Injecting a fault ε in Li induces changes in the next rounds and results
in a faulty ciphertext C̃. The correct ciphering of the same plaintext is denoted C. The main goal is
to observe the distribution of ∆ = Lr−1 ⊕ L̃r−1, which is the XOR of both left parts of the correct and
faulty states before the last round. It is possible to compute each byte of ∆ = (δ7, . . . , δ0) as a function
of the correct/faulty ciphertexts and a guess g on the corresponding subtweakey byte in the last round.
Denoting Li = (`i7, . . . , `

i
0) and L̃i = (˜̀i7, . . . , ˜̀i0) – and similarly with rij and r̃ij for the right parts – we

infer:
δ0 = `r0 ⊕ ˜̀r0 ⊕ S(rr7 ⊕ g)⊕ S(r̃r7 ⊕ g)

δj = `rj ⊕ ˜̀rj ⊕ S(rr7−j ⊕ g)⊕ S(r̃r7−j ⊕ g)⊕ rr7 ⊕ r̃r7 for 1 ≤ j ≤ 6

δ7 = `r7 ⊕ ˜̀r7 ⊕ S(rr0 ⊕ g)⊕ S(r̃r0 ⊕ g)⊕ rr7 ⊕ r̃r7
⊕ rr6 ⊕ r̃r6 ⊕ rr5 ⊕ r̃r5 ⊕ rr4 ⊕ r̃r4 ⊕ rr3 ⊕ r̃r3 ⊕ rr2 ⊕ r̃r2 ⊕ rr1 ⊕ r̃r1

(3.6)

(3.7)

(3.8)

Depending on the round where the fault is injected, the attacker might be able to know the distribution
of ∆. For example, if a fault ε is injected in Lr−3, then ∆ = ε. If the attacker knows ε, he can check
whether the g-dependent ∆ value calculated from the previous equations equals ε or not, discarding
subtweakey candidates that do not. Note that due to the byte oriented scheme of Lilliput-TBC, the
attack can be done on each subtweakey byte independently, allowing to guess one byte and calculate one
δ byte at a time. For this reason, the rest of the analysis focuses on a byte δ rather than on the whole
∆.

If the attacker is able to systematically fault with the same known ε in earliest rounds, he can build (in
an offline phase) approximations of the theoretic distribution of any δj . Given N pairs of correct/faulty
ciphertexts (C, C̃)N , the attack then consists in calculating, for each candidate g, the corresponding
empirical distribution of δj and select the one that is the most similar to the theoretic one. This can be
done in a maximum-likelihood manner for instance.

In the case where the attacker is not able to predict the distribution of δj , he can still expect it to
be biased for the correct key guess, and to be uniform for others (wrong-key assumption). Similarly he
can compute the empirical distributions of δj and select the one that is the farthest from the uniform
distribution. This can be done with the Squared Euclidean Imbalance distinguisher for example.

In order to infer the number of rounds to protect, we have considered a strong attacker who is able
to inject bit flips at the bit position of its choice. We then conducted attacks, injecting faults sooner and
sooner until the attack becomes unfeasible.

Simulation Results and Recommendation We have simulated the differential fault analysis where
a bit flip fault is injected at a precise round r − s and at a chosen bit position b on Lilliput-TBC-
I-1283. We have studied both the non profiled case where the distinguisher is the Squared Euclidean
Imbalance of the observed distribution of δj , and the profiled case based on the maximum-likelihood of
this distribution with respect to (an approximation of) the theoretic one. For sake of clarity, with our
notations, when the attacker observes the distribution of byte δj , it helps him to recover the subtweakey
byte RTK7−j . Our objective is to determine the largest value of s for which we suspect that a fault
attack can be realized. The fault bit position b is numbered from 0 to 63 which respectively denote the
least significant bit of X8 = `0 and the most significant bit of X15 = `7. For any set of parameters (round
gap s, fault bit position b, attacked subtweakey byte position (7− j), number of faults N , profiled/non
profiled setting), our results are expressed as the average success rate on 1000 runs.

We first observed that for s ≤ 6, the fault attack is somewhat easy. For s = 6, and for N = 1000
faults, there always exists a fault bit position for which the success rate is 1.0 for all positions j except
for j = 7. Note that we have systematically observed that the subtweakkey byte number 0 (j = 7) is
the most difficult to retrieve. For j = 7, the success rate may still be as large as 0.873 (depending on b)
in the profiled case. An interesting observation is that the success of the attack greatly depends on the
fault bit position. As we consider that the attacker can choose b, we think that the relevant criteria is
the maximum success rate taken on all b = 0 . . . 63 values.

Tables 3.3 and 3.4 present results for the non-profiled and the profiled settings respectively. We have
considered a number of faults N belonging to the set {103, 3.103, 104, 3.104, 105, 3.105, 106, 3.106, 107} for

3We guess that similar results would have been obtained for other versions.
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round faults attacked subtweakey byte : RTK7−j
j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=7

s = 6 103 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.032

s = 7

103 0.009 0.014 0.011 0.008 0.010 0.008 0.008 0.011
3.103 0.008 0.078 0.010 0.009 0.011 0.009 0.021 0.008
104 0.009 0.523 0.027 0.012 0.010 0.010 0.160 0.008

3.104 0.022 0.764 0.303 0.030 0.013 0.011 0.684 0.011
105 0.381 1.0 0.998 0.352 0.017 0.020 0.994 0.009

3.105 1.0 1.0 1.0 0.506 0.064 0.130 1.0 0.009
106 1.0 1.0 1.0 0.891 0.666 0.878 1.0 0.010

3.106 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.008
107 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.008

s = 8

105 0.010 0.008 0.011 0.011 0.008 0.009 0.012 0.009
3.105 0.008 0.011 0.008 0.008 0.009 0.008 0.008 0.009
106 0.009 0.009 0.010 0.013 0.010 0.012 0.008 0.009

3.106 0.008 0.008 0.011 0.011 0.010 0.008 0.010 0.009
107 0.012 0.009 0.009 0.008 0.009 0.008 0.008 0.011

Table 3.3: Experimental success rate of non profiled (Squared Euclidean Imbalance) differential fault
analysis

round faults attacked subtweakey byte : RTK7−j
j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=7

s = 6 103 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.837

s = 7

103 0.036 0.448 0.076 0.023 0.012 0.013 0.226 0.009
3.103 0.083 0.730 0.275 0.076 0.019 0.019 0.668 0.010
104 0.336 0.990 0.825 0.291 0.046 0.053 0.961 0.009

3.104 0.875 1.0 1.0 0.555 0.113 0.180 1.0 0.009
105 1.0 1.0 1.0 0.728 0.497 0.669 1.0 0.012

3.105 1.0 1.0 1.0 0.992 0.965 0.992 1.0 0.010
106 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.011

3.106 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.009
107 - - - - - - - -

s = 8

105 0.010 0.007 0.009 0.007 0.009 0.011 0.010 0.011
3.105 0.009 0.009 0.009 0.009 0.009 0.007 0.007 0.009
106 0.009 0.012 0.008 0.011 0.010 0.010 0.009 0.011

3.106 0.009 0.009 0.008 0.008 0.009 0.010 0.009 0.010
107 0.009 0.008 0.011 0.008 0.010 0.009 0.008 0.012

Table 3.4: Experimental success rate of profiled (Maximum Likelihood) differential fault analysis
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s = 7, and to the set {105, 3.105, 106, 3.106, 107} for s = 8. Without surprise, one can observe that the
profiled attack is more efficient than the non-profiled one. For s = 7 all subtweakey bytes except for
j = 7 can be retrieved with about 105 faults. Even with only about 3000 faults two subtweakey bytes
(for j = 1 and j = 6) can be recovered. We also observe that for s = 8 the attack does not work, even
in the profiled case and even with ten millions faults, whatever the bit fault position and whatever the
attacked byte.

Based on our simulation results, we recommend to protect Lilliput-TBC against differential fault
analysis by doubling the execution of a minimum of seven last rounds.

3.4.8 Security Evaluation Summary
Table 3.5 gives a security evaluation summary for all the instances of Lilliput-TBC. From this table,
we are able to say that each instance has a sufficient security margin (given in the last column).

STKM RTKM Nb rounds
(r)

Sec. Margin
(in rounds)Diff. Lin. Struct. Diff. Lin. RTKB Struct.

Lilliput-TBC-I-128 21 24 18 27 24 28 23 32 4
Lilliput-TBC-I-192 25 31 18 32 31 32 24 36 4
Lilliput-TBC-I-256 32 38 18 40 38 36 25 42 2
Lilliput-TBC-II-128 21 24 18 26 24 26 22 32 6
Lilliput-TBC-II-192 25 31 18 31 31 30 23 36 5
Lilliput-TBC-II-256 32 38 18 39 38 34 24 42 3

Table 3.5: Security Evaluation summary (“paranoid” case). STKM means “Single Tweakey Model”,
RTKM means “Related Tweakey Model” and RTKB means “Related Tweakey Boomerang attack”.

Surprisingly, classical attacks such as differential and linear attacks reach more rounds than structural
attacks for Lilliput-TBC. This is mainly linked with the choice of a Feistel-like scheme with a good
diffusion.
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Chapter 4

Implementations

Lilliput-AE is suited to be implemented efficiently on a wide range of processors (especially those
embedded in IoT platforms) and in hardware. This chapter will provide insights on efficient implemen-
tation methods, especially on 8-bit processors where Lilliput-AE is by design well adapted due to
its byte-oriented nature. Many good properties on 8-bit platforms are also valid on 16-bit and 32-bit
platforms.

4.1 Software Implementations
In this section, we give some possible variants for implementing Lilliput-AE. We take as reference
IoT platforms those from the FELICS (Fair Evaluation of LIghtweight Cryptographic Systems) frame-
work [21]: 8-bit Atmel AVR ATmega128, 16-bit Texas Instruments MSP430F1611 and 32-bit Arduino
Due ARM Cortex-M3. When useful, binary code size, RAM, and execution time optimizations will be
discussed.

On an 8-bit processor, Lilliput-AE can be programmed by simply implementing the different com-
ponent transformations.

4.1.1 Round Function OneRoundEGFN

If we look at the OneRoundEGFN the round function, NonLinearLayer function is only made of S-boxes
computation, with previous subtweakey addition. LinearLayer function is just successive byte additions
on x15 followed by byte additions on most significant bytes of OneRoundEGFN internal state. Finally, a
byte-oriented permutation, PermutationLayer, is computed.

A straightforward implementation is then easy to implement on 8-bit processors. The implementation
of all the Fi functions requires a table of 256 bytes. Since this table is fixed, it can be easily stored in
EEPROM data. As mentioned in section 3.2, S has been chosen to be easily masked in hardware and
software.

Concerning code size, OneRoundEGFN can be easily computed with loops in order to save ROM program
space. For example, algorithm 5 shows that NonLinearLayer only needs one additional intermediate
register in total to store the successive results of SK7−i⊕x7−i and the S computation on it: RAM stack
usage is then minimal.

Algorithm 5: x8+i computation in Non-Linear Layer

1 for i = 0 to 7 do
2 x8+i ← x8+i ⊕ S(SK7−i ⊕ x7−i)

3 return (x15, x14, · · · , x8)

Similarly, algorithm 6 shows that LinearLayer can be also implemented by XOR additions and accu-
mulations.
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Algorithm 6: x8+i computation in Linear Layer

1 for i = 0 to 7 do
2 x15 ← x15 ⊕ xi
3 for i = 0 to 6 do
4 x14−i ← x14−i ⊕ x7

5 return (x15, x14, · · · , x8)

Name k t p Required αi

Lilliput-TBC-I-128 128 192 5 α0 to α4

Lilliput-TBC-I-192 192 192 6 α0 to α5

Lilliput-TBC-I-256 256 192 7 α0 to α6

Lilliput-TBC-II-128 128 128 4 α0 to α3

Lilliput-TBC-II-192 192 128 5 α0 to α4

Lilliput-TBC-II-256 256 128 6 α0 to α5

Table 4.1: Multiplications needed for each variant of Lilliput-TBC

Finally, PermutationLayer can be simply implemented as a series of MOV operations. For example,
in encryption mode: x13 ← x0, x9 ← x1, · · · , x7 ← x15.

Overall, a straightforward computation of OneRoundEGFN (which is the same for every TK size) needs
29 XORs (21 in the datapath plus 8 before each S-box computation), 8 accesses in EEPROM memory
for S-box computations, and 16 MOV operations for PermutationLayer, i.e. only 53 operations in total
(29 arithmetic operations and 24 memory operations). The footprint on RAM stack, ROM program
(as discussed earlier in this subsection) and on EEPROM data (256 bytes) of OneRoundEGFN is very
lightweight for 8-bit platforms.

4.1.2 Tweakey Schedule
The tweakey schedule can be decomposed into two distinct functions:

• the extraction function, which is called r times to produce subtweakey RTKi from the tweakey
state TKi, ∀i ∈ {0, · · · , r − 1},

• the update function, which is called r− 1 times to compute TKi+1 from TKi, ∀i ∈ {0, · · · , r− 2}.

The update function consists in one multiplication αi per lane. Each of these multiplications takes a
different amount of operations to complete. Table 4.1 summarizes which multiplications are needed for
each variant of Lilliput-TBC.

The extraction function consists in:

• xoring all p 64-bit lanes together bytewise: this requires (p− 1) 64-bit XORs, hence 8× (p− 1) 8-bit
XORs,

• xoring the resulting 64-bit word with the round constant Ci: this requires a single 8-bit XOR, since
Ci fits on 8 bits.

This function thus requires 8× (p− 1) + 1 XOR operations.

4-lane case

The following multiplications are needed to process four lanes: α0 = M , α1 = M2, α2 = M3, and
α3 = M4. As we will do for further number of lanes, we will develop the matrix relations to evaluate
precisely the number of required operations.

Multiplication α0 of vector x = (x7, x6, · · · , x0)t by matrix M can be expressed as:
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y7

y6

y5

y4

y3

y2

y1

y0


=



x6

x5

x5 � 3⊕ x4

x4 � 3⊕ x3

x2

x6 � 2⊕ x1

x0

x7


Multiplication α0 will thus require 14 operations in total:

• 3 shift operations,

• 3 XORs,

• 8 assignments.

Multiplication α1 is represented by matrix M2, which corresponds to two successive applications of
matrix M . Let us denote M · x as a = (a7, · · · , a0)t:

a7

a6

a5

a4

a3

a2

a1

a0


=



x6

x5

x5 � 3⊕ x4

x4 � 3⊕ x3

x2

x6 � 2⊕ x1

x0

x7


y = M2 · x = M · a can then be expressed as:

y7

y6

y5

y4

y3

y2

y1

y0


=



a6

a5

a5 � 3⊕ a4

a4 � 3⊕ a3

a2

a6 � 2⊕ a1

a0

a7


Some components of a are simply permuted components of x; others (namely, a5, a4 and a2) result

from a linear combination of components of x. Some of these combinations contribute to more than one
components of y: specifically, a5 = x5 � 3⊕ x4 and a4 = x4 � 3⊕ x3.

To minimize the number of operations, we can thus spend some registers to store a5 and a4. The
final expression for y = M2 · x then becomes:

y7

y6

y5

y4

y3

y2

y1

y0


=



a6

a5

a5 � 3⊕ a4

a4 � 3⊕ a3

a2

a6 � 2⊕ a1

a0

a7


=



x5

a5

a5 � 3⊕ a4

a4 � 3⊕ x2

x6 � 2⊕ x1

x5 � 2⊕ x0

x7

x6


Multiplication α1 will thus require 22 operations in total:

• 2 XORs, 2 shifts and 2 assignments for a5 and a4,

• 4 XORs, 4 shifts and 8 byte assignments.
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Multiplication α2 is represented by matrix M3, which corresponds to three successive applications of
matrix M . Let us denote M2 · x as b = (b7, · · · , b0)t:

b7
b6
b5
b4
b3
b2
b1
b0


=



a6

a5

a5 � 3⊕ a4

a4 � 3⊕ a3

a2

a6 � 2⊕ a1

a0

a7


y = M3 · x = M · b can then be expressed as:

y7

y6

y5

y4

y3

y2

y1

y0


=



b6
b5

b5 � 3⊕ b4
b4 � 3⊕ b3

b2
b6 � 2⊕ b1

b0
b7


As with α1, we can isolate components of b which satisfy the following constraints:

1. they result from a linear combination of more than one components of a,

2. they contribute to more than one components of y.

b5, b4 and b2 satisfy constraint 1; among those, only b5 = a5 � 3⊕ a4 and b4 = a4 � 3⊕ a3 = a4 �
3⊕ x2 satisfy constraint 2. To implement α2 using as few operations as necessary, we thus need to:

1. pre-compute a5 and a4,

2. pre-compute b5 and b4,

3. compute y as follows:



y7

y6

y5

y4

y3

y2

y1

y0


=



b6
b5

b5 � 3⊕ b4
b4 � 3⊕ b3

b2
b6 � 2⊕ b1

b0
b7


=



a5

b5
b5 � 3⊕ b4
b4 � 3⊕ a2

a6 � 2⊕ a1

a5 � 2⊕ a0

a7

a6


=



a5

b5
b5 � 3⊕ b4

b4 � 3⊕ x6 � 2⊕ x1

x5 � 2⊕ x0

a5 � 2⊕ x7

x6

x5


Multiplication α2 will thus require 30 operations in total:

• 2 XORs, 2 shifts and 2 assignments for a5 and a4,

• 2 XORs, 2 shifts and 2 assignments for b5 and b4,

• 5 XORs, 5 shifts and 8 byte assignments.

Multiplication α3 is represented by matrix M4, which corresponds to four successive applications of
matrix M . Let us denote M3 · x as c = (c7, · · · , c0)t:
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c7
c6
c5
c4
c3
c2
c1
c0


=



b6
b5

b5 � 3⊕ b4
b4 � 3⊕ b3

b2
b6 � 2⊕ b1

b0
b7


y = M4 · x = M · c can then be expressed as:

y7

y6

y5

y4

y3

y2

y1

y0


=



c6
c5

c5 � 3⊕ c4
c4 � 3⊕ c3

c2
c6 � 2⊕ c1

c0
c7


c4 and c5 are the only components of c which result from a linear combination of more than one

components of b, while contributing to more than one components of y. Therefore, to implement α3

using as few operations as necessary, we need to:

1. pre-compute a5 and a4,

2. pre-compute b5 and b4,

3. pre-compute c5 and c4,

4. compute y as follows:



y7

y6

y5

y4

y3

y2

y1

y0


=



c6
c5

c5 � 3⊕ c4
c4 � 3⊕ c3

c2
c6 � 2⊕ c1

c0
c7


=



b5
c5

c5 � 3⊕ c4
c4 � 3⊕ b2
b6 � 2⊕ b1
b5 � 2⊕ b0

b7
b6


=



b5
c5

c5 � 3⊕ c4
c4 � 3⊕ x5 � 2⊕ x0

a5 � 2⊕ x7

b5 � 2⊕ x6

x5

a5


Multiplication α3 will thus require 39 operations in total:

• 2 XORs, 2 shifts and 2 assignments for a5 and a4,

• 2 XORs, 2 shifts and 2 assignments for b5 and b4,

• 2 XORs, 3 shifts and 1 assignment for c4,

• 1 XOR, 1 shift and 1 assignment for c5,

• 5 XORs, 5 shifts and 8 byte assignments.

To sum up, for the 4-lane case, the multiplications by α0, α1, α2 and α3 require 14+22+30+39 =
105 operations in total.

Taking into account the 8× (p−1)+1 = 8×3+1 = 25 operations needed for the extraction function,
this leads to 105 + 25 = 130 operations for the whole subtweakey computation.
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5-lane case

To process five lanes, multiplications α0 = M , α1 = M2, α2 = M3, α3 = M4 (already described) and
α4 = MR are needed.

Multiplication α4 of vector x = (x0, x1, · · · , x7)t by matrix MR (as explained in section 2.3.3, we
invert the direction of binary notations when dealing with MR) can be expressed as:

y0

y1

y2

y3

y4

y5

y6

y7


=



x1

x2

x3 ⊕ x4 � 3
x4

x5 ⊕ x6 � 3
x3 � 2⊕ x6

x7

x0


Multiplication α4 will thus require 14 operations in total:

• 3 XORs and 3 shifts,

• 8 byte assignments.

To sum up, for the 5-lane case, the update function will require 105 operations (cf. 4-lane case)
plus 14 operations for α4, i.e. 119 operations. After adding 8× (5− 1) + 1 = 33 XORs for the extraction
function, we reach 138 operations for the whole subtweakey computation.

6-lane case

To process six lanes, multiplications α0 = M , α1 = M2, α2 = M3, α3 = M4, α4 = MR (already
described) and α5 = M2

R are needed.
Multiplication α5 of vector x = (x0, x1, · · · , x7)t by matrix M2

R corresponds to two successive appli-
cations of matrix MR. Let us denote MR · x as a = (a0, · · · , a7)t:

a0

a1

a2

a3

a4

a5

a6

a7


=



x1

x2

x3 ⊕ x4 � 3
x4

x5 ⊕ x6 � 3
x3 � 2⊕ x6

x7

x0


y = M2

R · x = MR · a can then be expressed as:

y0

y1

y2

y3

y4

y5

y6

y7


=



a1

a2

a3 ⊕ a4 � 3
a4

a5 ⊕ a6 � 3
a3 � 2⊕ a6

a7

a0


As with α1, α2 and α3, we will pre-compute components of a which depend on more than one

components of x and contribute to more than one components of y. For α5, this singles out a4 =
x5 ⊕ x6 � 3. We end up with the following expression for y:
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y0

y1

y2

y3

y4

y5

y6

y7


=



a1

a2

a3 ⊕ a4 � 3
a4

a5 ⊕ a6 � 3
a3 � 2⊕ a6

a7

a0


=



x2

x3 ⊕ x4 � 3
x4 ⊕ a4 � 3

a4

x3 � 2⊕ x6 ⊕ x7 � 3
x4 � 2⊕ x7

x0

x1


Multiplication α5 will thus require 21 operations in total:

• 1 XOR, 1 shift and 1 assignment for a4,

• 5 XORs, 5 shifts and 8 byte assignments.

To sum up, for the 6-lane case, the update function will require 119 operations (cf. 5-lane case)
plus 21 operations for α5, i.e. 140 operations. After adding 8× (6− 1) + 1 = 41 XORs for the extraction
function, we reach 181 operations for the whole subtweakey computation.

7-lane case

Finally, to process seven lanes, multiplications α0 = M , α1 = M2, α2 = M3, α3 = M4, α4 = MR,
α5 = M2

R (already described) and α6 = M3
R are needed.

Multiplication α6 of vector x = (x0, x1, · · · , x7)t by matrix M3
R corresponds to three successive

applications of MR. Let us denote M2
R · x as b = (b0, · · · , b7):

b0
b1
b2
b3
b4
b5
b6
b7


=



a1

a2

a3 ⊕ a4 � 3
a4

a5 ⊕ a6 � 3
a3 � 2⊕ a6

a7

a0


y = M3

R · x = MR · b can then be expressed as:

y0

y1

y2

y3

y4

y5

y6

y7


=



b1
b2

b3 ⊕ b4 � 3
b4

b5 ⊕ b6 � 3
b3 � 2⊕ b6

b7
b0


Only b4 = a5 ⊕ a6 � 3 = x3 � 2 ⊕ x6 ⊕ x7 � 3 depends on more than one components of a while

contributing to more than one components of y. To implement α6 using as few operations as necessary,
we thus need to:

1. pre-compute a4

2. pre-compute b4,

3. compute y as follows:
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y0

y1

y2

y3

y4

y5

y6

y7


=



b1
b2

b3 ⊕ b4 � 3
b4

b5 ⊕ b6 � 3
b3 � 2⊕ b6

b7
b0


=



a2

a3 ⊕ a4 � 3
a4 ⊕ b4 � 3

b4
a5 ⊕ a6 � 3⊕ a7 � 3

a4 � 2⊕ a7

a0

a1


=



x3 ⊕ x4 � 3
x4 ⊕ a4 � 3
a4 ⊕ b4 � 3

b4
x3 � 2⊕ x6 ⊕ x7 � 3

a4 � 2⊕ x0

x1

x2


Overall, multiplication α6 will require 28 operations:

• 1 XOR, 1 shift and 1 assignment for a4,

• 2 XORs, 2 shifts and 1 assignment for b4,

• 6 XORs, 6 shifts and 8 byte assignments.

To sum up, for the 7-lane case, the update function will require 140 operations (cf. 6-lane case)
plus 28 operations for α6, i.e. 168 operations. After adding 8× (7− 1) + 1 = 49 XORs for the extraction
function, we reach 217 operations for the whole subtweakey computation.

4.1.3 Possible Trade-Offs
Another implementation of the tweakey schedule’s update function can save some program space at
the expense of extra RAM usage and latency. To multiply a lane x by matrix M (resp. MR) raised
to the power of n > 1, one can multiply x by M (resp. MR) n times, instead of using the ad-hoc
expressions given in section 4.1.2. This allows the implementer to re-use the code for α0 (resp. α4) in
order to compute α1, α2 and α3 (resp. α5 and α6), although computing and storing each byte of every
M i · x, ∀i ∈ [1, n) requires more cycles and more working memory.

During Lilliput-TBC’s encryption process, either the full tweakey schedule can be run to pre-
compute all r subtweakeys before processing the plaintext, or each subtweakey can be computed on the
fly to save RAM. Since the decryption process uses subtweakeys in the reverse order, the full tweakey
schedule must be run before processing the plaintext, in order to compute the last subtweakey. The
implementer can then either

• discard all intermediate subtweakeys, and re-compute RTKi−1 from RTKi on the fly; this requires
additional code to implemented the inverted tweakey multiplications, and adds some latency to the
decryption process,

• keep all intermediate subtweakeys, which requires more RAM.

Note that there is no such issue with Lilliput-II, since algorithm 4 does not need Lilliput-TBC’s
decryption process.

4.1.4 16-bit and 32-bit Platforms
Typical implementations of the Lilliput-TBC tweakey schedule and OneRoundEGFN function map each
lane and (left and right) parts of Feistel network to a CPU word, resulting in the state of Lilliput-AE
represented in 6 to 9 words of 64 bits each depending on the number of lanes.

Specifically, the implementation of Lilliput-AE on a 64-bit CPU can exploit 64-bit wide boolean
operations and 64-bit rotations. Thus, the choice of Lilliput-AE favors 64-bit CPUs and yet remains
efficient on 32-bit (and smaller) processors.

For implementing the tweakey schedule on a 32-bit CPU, the 64 bits of a lane should be distributed
to two 32-bit words.

Implementing OneRoundEGFN computation leaves room for optimization on 16-bit and 32-bit proces-
sors. For 16-bit processors case, bytes should be considered and concatenated two-by-two (x1||x0, x3||x2,
and so on) and then XOR operations can be extended to 16 bits. For 32-bit processors case, bytes should
be considered and concatenated four-by-four (x3||x2||x1||x0, x7||x6||x5||x4, and so on) to get the same
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kind of benefits for 32-bit XOR operations. To ease the schedule of operations, the end of LinearLayer
(algorithm 7) should be computed before the beginning (algorithm 8) to compute repetitive 16-bit or
32-bit XOR operations.

Algorithm 7: Linear layer - second loop
1 for i = 0 to 6 do
2 x14−i ← x14−i ⊕ x7

Algorithm 8: Linear layer - first loop
1 for i = 0 to 7 do
2 x15 ← x15 ⊕ xi

4.1.5 Performance Benchmarks Summary
In terms of memory footprint, OneRoundEGFN function of Lilliput-TBC can fit easily in the working
memory (internal registers) of any considered processor, without requiring any additional RAM register.
For example, 8-bit Atmel AVR ATmega128 processors implement 32×8-bit registers, and then, since only
16 internal registers are needed to process the entire internal state, it leaves room for 16 more available
registers for intermediate computations. Concerning the tweakey schedule, since computations on each
lane are executed separately, and at most 4 additional registers are needed to compute the most complex
operation (α3), RAM stack consumption is very low.

Table 4.2 compares the relative performance of a single round of each variant of the Lilliput-TBC
family.

This subsection also showcases comparisons with other lightweight AEAD algorithms. We chose to
compare Lilliput-AE with submissions to the CAESAR [16] competition; in particular, we focused on
the final portfolio for use-case 1, which includes Ascon [22] and ACORN [61]. The features of this
specific portfolio [9] align with Lilliput-AE’s own characteristics:

Use Case 1: Lightweight applications (resource constrained environments)
* critical: fits into small hardware area and/or small code for 8-bit CPUs
* desirable: natural ability to protect against side-channel attacks
* desirable: hardware performance, especially energy/bit
* desirable: speed on 8-bit CPUs
* message sizes: usually short (can be under 16 bytes), sometimes longer

A customized version of the FELICS framework [24] has been developed to evaluate the code size,
RAM consumption and execution time of these block ciphers on three microcontrollers:

• an 8-bit AVR ATmega128,

• a 16-bit TI MSP430,

• a 32-bit Arduino Due with ARM Cortex M3.

p Nb. of operations Cost wrt. 4-lane case
4 158 1
5 191 1.21
6 234 1.48
7 270 1.71

Table 4.2: Relative cost of a single round of Lilliput-TBC ∀p ∈ [4, 7]. “Nb. of operations” is the sum
of the number of operations for OneRoundEGFN (53, cf. 4.1.1) and the subtweakey computation (cf. 4.1.2).
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Our aim is to compare the performance of these block ciphers in a typical IoT situation: the test
scenario thus consists in encrypting a single 16-byte message along with 16-byte associated data. The
following compiler options were tested:

• -03, to minimize computation time in order to decrease power consumption,

• -Os, to reduce code size and thus optimize for low memory footprint.

The FELICS framework was run on an Ubuntu 16.04 64-bit desktop with 4 3.5 GHz CPUs and 8 GB
RAM. The software versions for platform-specific compilers, debuggers and other such utilities correspond
to those distributed by Ubuntu, with the exception of software listed in table 4.3.

Platform Software Version Origin

AVR simavr v1.6 Developer release [46]
Avrora 1.7.117-patched Cf. FELICS documentation [23]

MSP MSP430-GCC 7.3.2.154 Texas Instruments [42]
MSPDebug v0.25 Developer release [5]

ARM J-Link Software V6.42f SEGGER [31]

Table 4.3: Software versions for the FELICS framework.

The source code for the CAESAR algorithms was adapted from the SUPERCOP [56] toolkit in order
to comply with FELICS’s requirements. This implied, among other things:

• replacing platform-specific integer types with the exact-width types defined in stdint.h,

• isolating encryption code, decryption code, as well as constants held in read-only memory, into
distinct files,

• specifying where buffers should be stored (program memory or RAM) and how they should be
aligned, using FELICS-specific macro annotations.

In order to provide a fair assessment of each algorithm’s performance, we looked for implementations
of Ascon and ACORN distributed with SUPERCOP that performed well (i.e. better than the reference
version) for each FELICS platform. Table 4.4 sums up which implementations were considered for each
platform.

Algorithm Platform Implementations

Ascon

AVR ref
MSP ref
ARM ref, opt32
PC ref, opt64

ACORN

AVR 8bitfast
MSP 8bitfast
ARM opt1
PC opt1

Table 4.4: Algorithm implementations for each platform

As for Lilliput-AE, we used the same implementation on all platforms. This implementation, called
felicsref, differs from the reference implementation in the following ways:

• in the tweakey schedule, a loop over an array of function pointers has been unrolled manually; this
was found to improve performance along every metric,

• instead of pre-computing all r round-tweakeys up-front, each round-tweakey is computed on-the-fly
before applying OneRoundEGFN; this saves on RAM since instead of storing all r round-tweakeys in
memory for the whole encryption process, only a single round-tweakey is stored.

44



Tables 4.5, 4.6, 4.7 and 4.8 give our results for all 128-key algorithms on ATmega128, MSP430,
ARM and desktop PC respectively. These results showcase performance for the full encryption process,
including key (or tweakey) schedule.

Version CFLAGS Code size (B) RAM (B) Execution time (cycles)
ACORN-128 8bitfast -O3 3700 263 287991
Ascon-128 ref -O3 6140 268 191049
Ascon-128a ref -O3 6832 300 163315
Lilliput-I-128 felicsref -O3 6100 266 129093
Lilliput-II-128 felicsref -O3 6062 243 132650
ACORN-128 8bitfast -Os 2850 240 335934
Ascon-128 ref -Os 4322 323 254913
Ascon-128a ref -Os 4340 339 216080
Lilliput-I-128 felicsref -Os 2780 261 250657
Lilliput-II-128 felicsref -Os 2768 229 297992

Table 4.5: Performance results for 128-bit key algorithms on AVR ATmega128.

Version CFLAGS Code size (B) RAM (B) Execution time (cycles)
ACORN-128 8bitfast -O3 3276 274 391983
Ascon-128 ref -O3 8358 290 544075
Ascon-128a ref -O3 8620 306 457998
Lilliput-I-128 felicsref -O3 5760 300 121646
Lilliput-II-128 felicsref -O3 4932 272 144399
ACORN-128 8bitfast -Os 2326 218 381698
Ascon-128 ref -Os 3686 372 567110
Ascon-128a ref -Os 3672 382 475176
Lilliput-I-128 felicsref -Os 2304 260 201075
Lilliput-II-128 felicsref -Os 2234 232 246193

Table 4.6: Performance results for 128-bit key algorithms on MSP430F1611.

Version CFLAGS Code size (B) RAM (B) Execution time (cycles)
ACORN-128 opt1 -O3 7608 808 56288
Ascon-128 opt32 -O3 18912 268 12791
Ascon-128 ref -O3 4080 600 32363
Ascon-128a opt32 -O3 23764 272 11719
Ascon-128a ref -O3 4424 608 27688
Lilliput-I-128 felicsref -O3 4656 444 86293
Lilliput-II-128 felicsref -O3 4684 420 89390
ACORN-128 opt1 -Os 2364 344 44902
Ascon-128 opt32 -Os 16072 240 10221
Ascon-128 ref -Os 1426 472 51036
Ascon-128a opt32 -Os 18996 256 9298
Ascon-128a ref -Os 1408 480 42114
Lilliput-I-128 felicsref -Os 1746 304 185796
Lilliput-II-128 felicsref -Os 1768 272 266409

Table 4.7: Performance results for 128-bit key algorithms on ARM Cortex-M3.
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Version CFLAGS Code size (B) RAM (B) Execution time (cycles)
ACORN-128 opt1 -O3 6122 448 2966
Ascon-128 opt64 -O3 9616 192 1221
Ascon-128 ref -O3 2236 1984 6641
Ascon-128a opt64 -O3 11562 200 1111
Ascon-128a ref -O3 2102 1984 6308
Lilliput-I-128 felicsref -O3 6880 528 10030
Lilliput-II-128 felicsref -O3 6783 528 11816
ACORN-128 opt1 -Os 2564 392 3701
Ascon-128 opt64 -Os 9074 184 1257
Ascon-128 ref -Os 1486 448 3718
Ascon-128a opt64 -Os 10430 180 1164
Ascon-128a ref -Os 1466 448 3598
Lilliput-I-128 felicsref -Os 2906 416 21345
Lilliput-II-128 felicsref -Os 2867 400 24864

Table 4.8: Performance results for 128-bit key algorithms on PC.

Finally, tables 4.9, 4.10, 4.11 and 4.12 show the performance of the felicsref version of each member
of the Lilliput-AE family.

CFLAGS Code size (B) RAM (B) Execution time (cycles)
Lilliput-I-128 -O3 6100 266 129093
Lilliput-I-192 -O3 6190 282 161775
Lilliput-I-256 -O3 6322 298 211347
Lilliput-II-128 -O3 6062 243 132650
Lilliput-II-192 -O3 6004 260 192982
Lilliput-II-256 -O3 6088 276 251050
Lilliput-I-128 -Os 2780 261 250657
Lilliput-I-192 -Os 2926 277 314893
Lilliput-I-256 -Os 3112 293 408907
Lilliput-II-128 -Os 2768 229 297992
Lilliput-II-192 -Os 2880 245 376124
Lilliput-II-256 -Os 3024 261 490172

Table 4.9: Performance of Lilliput-AE on AVR ATmega128.

CFLAGS Code size (B) RAM (B) Execution time (cycles)
Lilliput-I-128 -O3 5760 300 121646
Lilliput-I-192 -O3 5950 316 155267
Lilliput-I-256 -O3 6186 334 207617
Lilliput-II-128 -O3 4932 272 144399
Lilliput-II-192 -O3 5082 288 181715
Lilliput-II-256 -O3 5272 304 240655
Lilliput-I-128 -Os 2304 260 201075
Lilliput-I-192 -Os 2524 288 354297
Lilliput-I-256 -Os 2696 304 465474
Lilliput-II-128 -Os 2234 232 246193
Lilliput-II-192 -Os 2320 248 300677
Lilliput-II-256 -Os 2540 276 550781

Table 4.10: Performance of Lilliput-AE on MSP430F1611.
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CFLAGS Code size (B) RAM (B) Execution time (cycles)
Lilliput-I-128 -O3 4656 444 86293
Lilliput-I-192 -O3 4756 460 107526
Lilliput-I-256 -O3 4876 476 140480
Lilliput-II-128 -O3 4684 420 89390
Lilliput-II-192 -O3 4592 436 129354
Lilliput-II-256 -O3 4692 452 167175
Lilliput-I-128 -Os 1746 304 185796
Lilliput-I-192 -Os 1830 320 273022
Lilliput-I-256 -Os 1930 336 378989
Lilliput-II-128 -Os 1768 272 266409
Lilliput-II-192 -Os 1836 288 293416
Lilliput-II-256 -Os 1920 304 413374

Table 4.11: Performance of Lilliput-AE on ARM Cortex-M3.

CFLAGS Code size (B) RAM (B) Execution time (cycles)
Lilliput-I-128 -O3 6880 528 10030
Lilliput-I-192 -O3 7073 552 12658
Lilliput-I-256 -O3 7295 560 16476
Lilliput-II-128 -O3 6783 528 11816
Lilliput-II-192 -O3 6946 536 14888
Lilliput-II-256 -O3 7139 560 19527
Lilliput-I-128 -Os 2906 416 21345
Lilliput-I-192 -Os 3049 440 31047
Lilliput-I-256 -Os 3210 464 37369
Lilliput-II-128 -Os 2867 400 24864
Lilliput-II-192 -Os 2979 424 30962
Lilliput-II-256 -Os 3113 448 44951

Table 4.12: Performance of Lilliput-AE on PC.

4.2 Hardware Implementations

4.2.1 Theoretical Results on ASIC
In this section, we provide theoretical hardware implementation results on ASIC (Application-Specific
Integrated Circuit) in terms of GEs. One GE is the area of a 2-input NAND gate in the considered CMOS
technology. It allows to get normalized area and then ease comparisons between different implementations
that use the same CMOS technology.

We provide here the global logic gates count for each lanes case, and translate it to the total number
of GEs in a given CMOS technology. That respectively allows the reader to easily get estimations for
other CMOS technologies and get real implementation numbers. The CMOS technology used here is
UMCL18G212T3 (CMOS 180 nm technology). In this technology, area of respectively XOR, NOT, AND
gates, and flip-flops are 2.67, 0.67, 1.33 and 5.33 GEs. We use non-scan flip-flops for registers in this
estimation. Moreover, control logic (e.g., multiplexers, finite state machine) is not taken into account,
which can underestimate in the end the real practical results after Place-and-Route process. We also
give a relative performance metric, which gives an estimation of the percentage of circuit area increase
(considering the total number of GEs) for each lanes case, with the 4-lane case considered as a reference.
We can estimate that one Lilliput-TBC S-box is equivalent to the total size of 12 AND, 26 XOR and 1
NOT gates, and so: 12× 1.33 + 26× 2.67 + 1× 0.67 = 15.96 + 69.42 + 0.67 ≈ 86 GEs.
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Nb. Lanes Registers Round Tweakey Total Relative
Function Schedule Perf.

4 384 8 S-boxes + 29×8 XORs 440 XORs 4530 GEs 1
5 448 8 S-boxes + 29×8 XORs 507 XORs 5050 GEs 1.15
6 512 8 S-boxes + 29×8 XORs 577 XORs 5626 GEs 1.24
7 576 8 S-boxes + 29×8 XORs 650 XORs 6115 GEs 1.35

We can compare these results with other hardware implementations of cryptographic standards. One
of the most compact implementations of AES is the “Atomic v2” version [2]: it is very lightweight
and smaller than our Lilliput-TBC hardware implementations (only 2060 GEs) but processes data
with a big latency (246 cycles) and then a low throughput (88.4 Mbps). One of the most compact
implementation of SHA-3 (with 1088-bit block size) occupies 5522 GEs (which is bigger than the 128-bit
key versions of Lilliput-TBC), and provides a very poor throughput (44.3 kbits) [37].

An argument against tunable parameters in a standard is that it makes implementations more expen-
sive, as they usually have to support all parameter values to fully implement the standard. However, for
Lilliput-AE, this can be mitigated by only implementing the hardware needed for computing the M
and MR functions, and iterate on them to compute the needed remaining multiplications. This version
will allow to save some logic gates, but at the expense of a decreased throughput.

For the FPGA implementation particular case, the S-box S can be put in dedicated block RAMs of
the used FPGA.

The high parallelization level of the nonce-respecting and the nonce-misuse resistant modes allows
implementing in hardware many instances of EK running in parallel and then getting high throughput,
especially on dedicated ASICs.

4.2.2 VHDL Results
This subsection showcases performance results for iterated versions of all variants of the Lilliput-TBC
tweakable block cipher. These results were produced using version 14.4 of the ISE Design Suite on a
Virtex-6 XC6VLX75T device, with two optimization settings: “area reduction” and “timing performance”.

Tables 4.13 and 4.14 provide results of LilliputTBC with implementations optimized for circuit area
and execution time, respectively.

Finally, tables 4.15 and 4.16 compare Lilliput-TBC to Ascon-128a, Ascon-128 and AES when
optimized for circuit area and execution time, respectively. We used the iterated implementation of
Ascon-128a and Ascon-128 described in [25].

Table 4.13: Results for Lilliput-TBC, optimized for area reduction.

Lilliput-TBC I-128 I-192 I-256 II-128 II-192 II-256
LUTs 1345 1605 1827 854 1055 1175
slices 384 428 534 249 302 344

registers 1076 1204 1336 943 1075 1203
flip-flop pairs 1345 1605 1827 886 1097 1223

unused flip-flops 464 538 634 233 258 264
unused LUTs 0 0 0 32 42 48

fully used 881 1067 1193 621 797 911
Freq (MHz) 282 286 288 338 326 339
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Table 4.14: Results for Lilliput-TBC, optimized for timing performance.

Lilliput-TBC I-128 I-192 I-256 II-128 II-192 II-256
LUTs 1625 1894 2140 1033 1218 1336
slices 568 564 649 430 433 415

registers 1109 1237 1369 1097 1108 1236
flip-flop pairs 1625 1894 2140 1136 1277 1405

unused flip-flops 700 777 896 315 370 375
unused LUTs 0 0 0 103 59 69

fully used 925 1117 1244 718 848 961
Freq (MHz) 357 352 367 402 388 408

Table 4.15: Comparison of Lilliput-TBC, Ascon and AES implementations, optimized for area re-
duction.

Ascon-128 Ascon-128a TBC-I-128 TBC-II-128 AES
LUTs 1318 1422 1345 854 1615
slices 357 387 384 249 437

registers 933 997 1076 943 661
Freq (MHz) 372 357 288 338 170

Throughput(Mbit/sec) 3402 5084 1152 1352 2181

Table 4.16: Comparison of Lilliput-TBC, Ascon and AES implementations, optimized for timing
performance.

Ascon-128 Ascon-128a TBC-I-128 TBC-II-128 AES
LUTs 1370 1754 1625 1033 3258
slices 392 497 568 430 897

registers 933 997 1109 1097 670
Freq (MHz) 432 460 357 402 175

Throughput(Mbit/sec) 3951 6544 1428 1608 2245

4.3 Threshold Implementations
This section aims at giving the reader some insight into first order TIs of Lilliput-AE.

4.3.1 The S-box
The quadratic functions

As stated in Section 3.2.3, the 8-bit S-box has been chosen with TIs in mind as it is built from three inner
4-bit S-boxes, each directly decomposable into quadratic permutations. Therefore, a first order TI can
be achieved using only three shares. The following algorithms describe, for each quadratic permutation
F,G and Q, a function f that computes an output share 〈x, y, z, t〉 for two input shares 〈a0, b0, c0, d0〉
and 〈a1, b1, c1, d1〉.
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Algorithm 9: fF (〈a0, b0, c0, d0〉, 〈a1, b1, c1, d1〉) = 〈x, y, z, t〉
1 x← (a0 ⊕ c0)(b0 ⊕ d0)⊕ (a0 ⊕ c0)(b1 ⊕ d1)⊕ (a1 ⊕ c1)(b0 ⊕ d0)
2 y ← a0d0 ⊕ a0d1 ⊕ a1d0

3 z ← b1 ⊕ d1

4 t← (a0 ⊕ b0 ⊕ d0)(a0 ⊕ b0 ⊕ c0)⊕ (a0 ⊕ b0 ⊕ d0)(a1 ⊕ b1 ⊕ c1)⊕ (a1 ⊕ b1 ⊕ d1)(a0 ⊕ b0 ⊕ c0)

Algorithm 10: fG(〈a0, b0, c0, d0〉, 〈a1, b1, c1, d1〉) = 〈x, y, z, t〉
1 x← a1

2 y ← b1
3 z ← c1
4 t← b0c0 ⊕ b0c1 ⊕ b1c0 ⊕ d1

Algorithm 11: fQ(〈a0, b0, c0, d0〉, 〈a1, b1, c1, d1〉) = 〈x, y, z, t〉
1 x← c0d0 ⊕ c0d1 ⊕ c1d0 ⊕ b1
2 y ← d1

3 z ← a0d0 ⊕ a0d1 ⊕ a1d0 ⊕ c1
4 t← a1

Therefore, for each quadratic function A ∈ F,G,Q, TI with three shares is achived by computing

A(〈a0, b0, c0, d0〉, 〈a1, b1, c1, d1〉, 〈a2, b2, c2, d2〉) =fA(〈a1, b1, c1, d1〉, 〈a2, b2, c2, d2〉),
fA(〈a2, b2, c2, d2〉, 〈a0, b0, c0, d0〉),
fA(〈a0, b0, c0, d0〉, 〈a1, b1, c1, d1〉) .

(4.1)

Contrary to Q and G, the output sharing of F is not uniform but it does not matter as these functions
are used in a Feistel network. Therefore, there is no need for re-masking and a threshold implementation
of the 8-bit S-box can be built upon the algorithms described above. Note that the inner 4-bit S-box
S3

4 requires an additionnal NOT instruction: it only has to be applied to one of the three shares (i.e.,
¬x = ¬x0 ⊕ x1 ⊕ x2).

Software implementation using Look-Up Tables

In order to improve the performance of software implementations, it is possible to use look-up tables for
the quadratic functions as done in [54]. To do so, one can compute three 8-bit to 4-bit look-up tables
from fF , fG and fQ noted TF , TG and TQ, respectively. Because S̄2

4 requires a bitwise permutation
P = 028a46ce139b57df between the two quadratics, an additionnal 4-bit to 4-bit look-up table can be
used.

However, as a0 and d0 do not interfere in the computation of fG(〈a0, b0, c0, d0〉, 〈a1, b1, c1, d1〉),
it is possible to divide the size of TG by four (i.e., from 256 to 64 bytes) at the cost of two bit-
wise operations at each table look-up. In the same way, b0 does not interfere in the computation of
fQ(〈a0, b0, c0, d0〉, 〈a1, b1, c1, d1〉) and the size of TQ can be reduced by half. In the rest of this section,
we use these tricks in order to minimize the memory space required to store the look-up tables. The
three resulting look-up tables are given below.
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0 1 2 3 4 5 6 7 8 9 a b c d e f
0 0 2 0 2 2 0 2 0 0 2 0 2 2 0 2 0
1 0 2 9 b 3 1 a 8 d f 4 6 e c 7 5
2 0 b 0 b b 0 b 0 1 a 1 a a 1 a 1
3 9 2 0 b 3 8 a 1 5 e c 7 f 4 6 d
4 1 2 8 b 3 0 a 9 9 a 0 3 b 8 2 1
5 0 3 0 3 3 0 3 0 5 6 5 6 6 5 6 5
6 8 2 1 b 3 9 a 0 1 b 8 2 a 0 3 9
7 0 a 0 a a 0 a 0 4 e 4 e e 4 e 4
8 1 e 0 f b 4 a 5 1 e 0 f b 4 a 5
9 c 3 4 b 7 8 f 0 1 e 9 6 a 5 2 d
a 0 6 1 7 3 5 2 4 1 7 0 6 2 4 3 5
b 4 2 c a 6 0 e 8 8 e 0 6 a c 2 4
c 8 6 0 e 2 c a 4 0 e 8 6 a 4 2 c
d 4 a 5 b f 1 e 0 1 f 0 e a 4 b 5
e 0 7 8 f 3 4 b c 9 e 1 6 a d 2 5
f 5 2 4 3 7 0 6 1 1 6 0 7 3 4 2 5

Table 4.17: TF [x][y] = fF (x, y)

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 0 1 2 3 4 5 6 7 8 9 a b c d e f
1 0 1 2 3 5 4 7 6 8 9 a b d c f e
2 0 1 3 2 4 5 7 6 8 9 b a c d f e
3 1 0 2 3 4 5 7 6 9 8 a b c d f e

Table 4.18: TG[x][y] = fG(x� 1, y)

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 0 4 2 6 8 c a e 1 5 3 7 9 d b f
1 0 4 a e 8 c 2 6 3 7 9 d b f 1 5
2 0 c 2 e 8 4 a 6 1 d 3 f 9 5 b 7
3 8 4 2 e 0 c a 6 b 7 1 d 3 f 9 5
4 0 6 2 4 8 e a c 1 7 3 5 9 f b d
5 2 4 8 e a c 0 6 1 7 b d 9 f 3 5
6 0 e 2 c 8 6 a 4 1 f 3 d 9 7 b 5
7 a 4 0 e 2 c 8 6 9 7 3 d 1 f b 5

Table 4.19: TQ[x][y] = fQ(x+ 4, y)

In this way, the memory space required to store all the look-up tables equals |TF |+ |TG|+ |TQ|+ |P | =
256+64+128+16 = 464 bytes. Finally, the output shares of the 8-bit S-box can be computed by running
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the Feistel network step by step as detailed by Algorithm 12.

Algorithm 12: S′(s0, s1, s2) = s′0, s
′
1, s
′
2 with look-up tables TF , TG, TQ and P

1 /* Decompose 8-bit shares into 4-bit shares */
2 for i = 0 to 2 do
3 s̄i ← si � 4
4 si ← AND(si, 15)

5 end
6

7 /* First 4-bit S-box */
8 t0 ← TG[AND(s1, 7)� 1][s2]
9 t1 ← TG[AND(s2, 7)� 1][s0]

10 t2 ← TG[AND(s0, 7)� 1][s1]
11 s̄0 ← s̄0 ⊕ TF [t1][t2]
12 s̄1 ← s̄1 ⊕ TF [t2][t0]
13 s̄2 ← s̄2 ⊕ TF [t0][t1]
14

15 /* Second 4-bit S-box */
16 t0 ← P [TQ[AND(s̄1, 3)⊕ (AND(s̄1, 8)� 1)][s̄2]]
17 t1 ← P [TQ[AND(s̄2, 3)⊕ (AND(s̄2, 8)� 1)][s̄0]]
18 t2 ← P [TQ[AND(s̄0, 3)⊕ (AND(s̄9, 8)� 1)][s̄1]]
19 s0 ← s0 ⊕ TQ[AND(t1, 3)⊕ (AND(t1, 8)� 1)][t2]
20 s1 ← s1 ⊕ TQ[AND(t2, 3)⊕ (AND(t2, 8)� 1)][t0]
21 s2 ← s2 ⊕ TQ[AND(t0, 3)⊕ (AND(t0, 8)� 1)][t1]
22

23 /* Third 4-bit S-box */
24 t0 ← TG[AND(s1, 7)� 1][s2]⊕ 1
25 t1 ← TG[AND(s2, 7)� 1][s0]
26 t2 ← TG[AND(s0, 7)� 1][s1]
27 s̄0 ← s̄0 ⊕ TF [t1][t2]
28 s̄1 ← s̄1 ⊕ TF [t2][t0]
29 s̄2 ← s̄2 ⊕ TF [t0][t1]
30

31 /* Build 8-bit output shares from 4-bit shares */
32 for i = 0 to 2 do
33 s′i ← (s̄i � 4)⊕ si
34 end

4.3.2 Application to the Entire Algorithm
The tweakey schedule

Because the key is manipulated along with the tweak during the tweakey schedule, this step must be
protected to prevent a side-channel attack. To do so, one can share the tweak and the key into two
shares. There is no difficulty to apply TI to the tweakey schedule as it operates in a linear fashion. As
a result, the tweakey schedule produces subtweakeys splitted in two shares RTKi

0 and RTKi
1. In order

to limit the amount of randomness to generate, it is possible to share the key only. However, note that
non-sharing the tweak implies that a profiling attack against the tweakey schedule would allow to deduce
some information on the power consumption model of the device.

The EGFN round function

A way of applying TI to the round function is to share the input block into three shares which are
processed during the entire round function. More precisely, if Xi,j refers to the ith byte of the jth share
of X, then a TI of Fi at round r consists in F ′i = S′(Xi,0 ⊕ RTKr

i,0, Xi,1 ⊕ RTKr
i,1, Xi,2) where S′

refers to the Algorithm 12. Because the remaining steps of the round function are linear, it is sufficient
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to apply it on each share independently.

4.3.3 Performance Impact
We implemented the thresholding scheme described in this section, using lookup tables for the S-box,
and compared its performance with our felicsref implementation, in the conditions described in sec-
tion 4.1.5 with the compiler option -O3. Table 4.20 shows the impact for each metric on each platform.

Note that the threshold implementation used in this benchmark does not include a random number
generator; these results therefore do not account for the overhead induced by share initialization.

Platform Member ROMthreshold

ROMfelicsref

RAMthreshold

RAMfelicsref

cyclesthreshold

cyclesfelicsref

AVR

Lilliput-I-128 2.37 1.60 5.17
Lilliput-I-192 2.39 1.59 4.87
Lilliput-I-256 2.43 1.59 4.57
Lilliput-II-128 2.39 1.63 6.41
Lilliput-II-192 2.42 1.61 5.34
Lilliput-II-256 2.46 1.61 5.02

MSP

Lilliput-I-128 1.85 1.51 4.39
Lilliput-I-192 1.85 1.51 4.12
Lilliput-I-256 1.87 1.50 3.87
Lilliput-II-128 2.01 1.54 4.85
Lilliput-II-192 2.00 1.53 4.57
Lilliput-II-256 2.02 1.53 4.29

ARM

Lilliput-I-128 1.99 1.51 4.36
Lilliput-I-192 1.98 1.51 4.19
Lilliput-I-256 1.99 1.51 3.95
Lilliput-II-128 1.99 1.52 5.53
Lilliput-II-192 2.01 1.52 4.55
Lilliput-II-256 2.02 1.52 4.34

PC

Lilliput-I-128 1.49 1.29 4.54
Lilliput-I-192 1.49 1.28 4.38
Lilliput-I-256 1.50 1.30 4.13
Lilliput-II-128 1.50 1.26 5.17
Lilliput-II-192 1.50 1.28 4.84
Lilliput-II-256 1.51 1.27 4.51

Table 4.20: Performance impact of the thresholding scheme.

4.4 Future Works
This chapter provided first results and estimations of the performance of software and hardware imple-
mentations of Lilliput-AE. In 2019, the co-authors will publish:

• Optimized software implementations of Lilliput-AE on IoT platforms,

• Side-channel protected implementations of Lilliput-AE with performance benchmark,

• Optimized hardware implementations of Lilliput-AE (e.g., serial implementations).

All this work will be published on the PACLIDO projet website: https://paclido.fr/lilliput-ae/.
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Appendix A

Changelog

A.1 Changelog from v1 to v1.1
1. Multiplication coefficients α0 to α3 were changed to ensure no lane goes through the tweakey

schedule unmodified:

• α0: from Id to M ,

• α1: from M to M2,

• α2: from M2 to M3,

• α3: from M3 to M4.

2. Chapter 4 was updated to reflect the impact of M4 on implementations:

• all performance estimations and measurements were recomputed:

– tweakey schedule operation counts (section 4.1.2),
– relative cost of a single round ∀p ∈ [4, 7] (table 4.2),
– FELICS implementation results (tables 4.5 to 4.12 and 4.20),
– theoretical gate counts on ASIC (section 4.2.1),
– FPGA implementation results (tables 4.13 to 4.16).

• section 4.1.2 explains how to implement M4 efficiently,

3. Some vectors in section 4.1.2 were renamed to improve readability:

• from xM to a,

• from xM2 to b,

• from xMR
to a,

• from xM2
R
to b.

This allows refering to individual components as e.g. bi instead of xM2,i.

4. Additional trade-offs were added to section 4.1.3.

5. Section 4.1.5 describes an additional optimization to the felicsref implementation.

6. Section 4.2.2 presents fewer configurations for Lilliput-TBC.

7. Some typos were corrected.
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